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Transmission and Distribution Systems
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Abstract—This paper proposes a three-stage unit commitment4
model for the market operation of transmission and distribution5
coordination under the uncertainties of renewable generation and6
demand variations. The first stage is for the independent system7
operator (ISO) that determines the commitment decisions of the8
transmission-level generators and the distribution-level system re-9
configuration; the second stage optimizes the transmission eco-10
nomic dispatch; then distribution system operators (DSOs) in the11
third stage perform their economic dispatch and exchange informa-12
tion with the ISO at the boundary nodes. Between the transmission13
and distribution networks, not only conventional thermal genera-14
tors but renewables and variable demands are considered, which15
are tackled via a multi-stage stochastic programming approach.16
The model adopts a convexified AC branch flow formulation in17
the distribution system. We devise a generalized nested L-shaped18
algorithm to solve the proposed framework in an efficient manner.19
Numerical experiments on multi-scale test systems corroborate the20
efficacy of this strategy.21

Index Terms—Coordinated transmission and distribution22
market, uncertainty-based optimization, stochastic programming,23
nested decomposition method.24

NOMENCLATURE25

1) Sets:26

T /D Transmission (T) / distribution (D) system27

GT /GD Conventional thermal generator of T / D system28

E / I Renewable generator / connected bus29

Q Network reconfiguration set30

LT /LD Load of T / D system31

FT /FD Line of T / D system32

AD /AD
T Bus of D system / with substation33

FD
Q Configurable line of D system34

S /N Sending / receiving bus of line35

C Generator or injection mapping with bus36

H Time horizon37

O Iteration38
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2) Indices: 39

gT / gD Indices for conventional generators in T/D system 40

rT / rD Indices for renewable generators in T/D system 41

�T / �D Indices for loads in T/D system 42

fT Indices for transmission lines 43

mn Indices for connected distribution branches 44

nT / nD Indices for nodes in T/D system 45

i Indices for boundary buses 46

ωT /ωD Indices for operating scenarios in T/D system 47

o Indices for iteration counter 48

h Indices for time (hours) 49

c Indices for multiple D systems 50

q Indices for configurable swtich in D system 51

3) Parameters (in both T and D, otherwise specified): 52

PC Penalty cost [$/MWh] 53

R/X /B Resistance / reactance / susceptance [p.u.] 54

RD /RU Ramp-down / up limits [MW/h] 55

SD /SU Shut-down / start-up cost [$] 56

MO/MD Minimum ON / OFF time limits [h] 57

PT,max
f Active power flow limits [MW] 58

Y D,max
mn Upper limit of the branch current [A] 59

V min / V max Lower/Upper limit of the nodal voltage [kV] 60

Pmin
g /Pmax

g Active power output limits of generators [MW] 61

4) Uncertainties (in both T and D): 62

Pmax
r,h (ω) Maximum available renewable power [MW] 63

L�,h(ω) Nodal demand [MW] 64

Prω Probability for scenario ω 65

5) Binary Variables: 66

uT
g,h / d

T
g,h Start-up/shut-down indicator for generators 67

iTg,h Unit commitment indicator for generators 68

zq,h,c Distribution configuration indicator 69

6) Continuous Variables: 70

p
(T,D)
(g,r) / pi Active generation output / power injection 71

qD(g,r) Reactive generation output 72

pDn / qDn Active / reactive node injection 73

pTf Active line flow 74

pDmn / q
D
mn Active / reactive feeder flow 75

xD
mn Line orientation variable 76

vn / δ
T
n Squared nodal voltage magnitude / angle 77

yDmn Squared branch current 78

s� Active load shedding 79
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I. INTRODUCTION80

UNIT commitment (UC) and economic dispatch (ED) have81

been of capital importance in the market operations for82

system operators in the world. The coordination between trans-83

mission and distribution systems (T-D coordination) in the84

market operation has attacked great attention. The primary85

motivation for T-D coordination is based on the fact that the86

distribution system has become active due to the increasing87

deployment of smart grid technologies including distributed88

energy resources (DERs), electric vehicles, microgrids, etc. The89

system dynamics within the distribution networks can propagate90

to the transmission side and vice versa [1]. A recent report91

from California Independent System Operator (CAISO) [2]92

supports this motivation. It indicates that, due to the growing93

penetration of the DERs, Independent System Operator (ISO),94

which regulates the upstream market in the transmission level,95

needs to attain more visibility on the downstream markets to96

reinforce its decision-making.97

In the conventional market hierarchy, ISOs and utilities carry98

out UC and ED problems within their respective territories. The99

upstream operators make scheduling decisions according to the100

estimated information from the downstream aggregators [3].101

Without the T-D coordination, the power mismatch at the bound-102

ary node between transmission and distribution systems prolifer-103

ates as distribution systems become more and more active [4]. To104

cope with the issue of power mismatches, Z. Li et al. [5] proposed105

a distributed paradigm that ISO delivers its optimal locational106

marginal price (LMP) to distribution system operators (DSOs),107

whereas DSOs return their optimal energy demand to ISO. The108

mutually observable information in the T-D coordination should109

be limited to protect the confidentiality of stakeholders [5].110

Recently, based on this decentralized framework, many papers111

have considered more elements and more efficient algorithms.112

P. Li et al. [6] built a distributionally robust optimization frame-113

work considering system uncertainties and adopted an analytical114

target cascading algorithm to decentralize the problem. R. Nejad115

et al. [7] and J. Zhao et al. [8] focused on the integrated system116

restoration using the alternating direction of multipliers method117

(ADMM) to decentralize the problem. M. Arpanahi et al. [9]118

proposed a decentralized framework for T-D coordination that119

considers robust optimization for the uncertainties, while using120

an enhanced ADMM algorithm to solve. A. Nawaz et al. [10]121

proposed a probabilistic coordination method to select one122

stochastic scenario to solve the T-D coordinated problem. How-123

ever, most of the works focus on ED or OPF, instead of the UC,124

which could not serve as a general reference for electricity mar-125

ket operations. It is also reasonable that the algorithms proposed126

above lie in the category of the augmented Lagrangian method,127

which would fail if integer variables are present in the problem.128

For the modeling of T-D coordination, recently, research on129

this topic gains prevalence, and potential modeling frameworks130

from the perspective of DSOs can be categorized into three types,131

i.e., centralized, decentralized, and transactive models, which132

are summarized in [11]. Among the models discussed therein,133

Model 3, i.e., the distribution node utility model, acts as a transi-134

tional model from the centralized operation to the decentralized135

operation, where the ISO and DSOs take the responsibilities 136

of market operations in the transmission and distribution level, 137

respectively, and they exchange information in the boundary 138

substation. The natural compatibility with the current market 139

practice is the major advantage of this model [11]. Based on this 140

framework, we propose a three-stage stochastic co-optimization 141

for the T-D coordinated UC and ED. In this scheme, the ISO reg- 142

ulates the coordination between the transmission and distribu- 143

tion systems, where the transmission system operation is under 144

control of the ISO and the distribution system operation is under 145

control of the DSO. As in the current industry’s practice [12], 146

the ISO carries out the transmission-level market operations 147

including UC and ED with the distribution-level inputs from 148

DSOs. DSOs are utilities that own the distribution network with 149

aggregated DERs. It is also noteworthy that the current research 150

on decentralized or transactive models is fruitful and few are 151

investigating centralized frameworks due to the computational 152

hurdle. However, before the fully decentralized distribution op- 153

erations, the industry needs a transitional model that allows the 154

ISOs to take the local distribution information into account while 155

regulating the coordination [13]. Hence, in the proposed market 156

hierarchy, the ISO performs the day-ahead transmission-level 157

UC and ED with the aggregated distribution information, and 158

DSOs perform the distribution-level ED. The ISO does not need 159

to attain detailed distribution system information, which protects 160

the local utilities’ confidentiality. 161

Apart from the scheduling, the distribution-level network 162

reconfiguration drastically influences the market operation in 163

the distribution level, and the influence will propagate to the 164

transmission level [14]. Since the ISO monitors the T-D coordi- 165

nation, the topology changes in the active distribution network 166

(ADN) should be taken into consideration in the ISO’s operation. 167

Besides, utilities are using an hourly decision-making process to 168

evaluate and perform the reconfiguration [15]. Considering that 169

the reconfiguration cannot be changed frequently in one day and 170

should be determined in a day-ahead manner [15], in this work, 171

we add the network reconfiguration decisions in the first stage 172

together with the UC decisions. 173

In summary, we propose a market paradigm for the T-D 174

coordinated power system, which is depicted in Fig. 1. Mathe- 175

matically, the ISO needs to solve a mixed-integer linear program- 176

ming (MILP) model for transmission-level UC with distribution 177

network reconfigurations, when DSOs need to solve convex 178

programming models for distribution-level ED. In the first stage, 179

the ISO performs the transmission UC and determines the distri- 180

bution network reconfiguration, then delivers the information to 181

the subsequent stages. Then, the ED operation is carried out in 182

the second stage and delivers the optimal boundary offer to the 183

third stage. The structure of the first and second stages forms a 184

two-stage transmission-level stochastic UC [16]. Finally, DSOs 185

perform their ED operations in the third stage based on the 186

determined configuration from the first stage and the energy 187

offer from the second stage. 188

For the solution strategy, there has been a significant number 189

of studies towards the efficient solution of large-scale SP prob- 190

lems. One of the most commonly used strategies is the Benders 191

decomposition or the L-shaped method [17]. For multi-stage 192
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Fig. 1. Proposed coordinated market paradigm.

SP as in this work, scenario-wise decomposition like the pro-193

gressive hedging [18] and stage-wise decomposition like the194

approximate dynamic programming [19] are discussed in the195

literature. Particularly for the dynamic programming category,196

stochastic dual dynamic integer programming (SDDiP) has been197

an effective method for multi-stage stochastic optimization [20],198

with various recent applications on power systems. J. Zhou et199

al. [21] proposed a SDDiP model for multi-stage stochastic UC200

and enhanced the algorithm by a regularized level approxima-201

tion for Lagrangian cuts. M. Hjelmeland et al. [22] adopted202

SDDiP solving a hydropower scheduling problem with binary203

expansion on state variables and found that the strengthened204

Benders cut presented the highest performance score. T. Ding et205

al. [23] leveraged the SDDiP method in the distribution system206

planning with a multi-stage nested decomposition algorithm.207

Though it is well recognized that SDDiP attains fast convergence208

and accuracy, it could not solve the proposed T-D coordinated209

market operation. The reasons are twofold: 1) Each time stage210

in the SDDiP needs to assume the complete information of211

both transmission and distribution networks, which compro-212

mises the stakeholders’ privacy; 2) There is no evidence that213

the SDDiP retains global convergence if recourse problems are214

nonlinear.215

Thus, since our work is both scenario-wise and stage-wise216

complex, we employ the nested L-shaped method [17] for the217

proposed T-D coordinated market operation. Furthermore, we218

enhance the conventional nested L-shaped method and algo-219

rithmically extend it to a multi-stage mixed-integer convex220

programming. To the best of the authors’ knowledge, this is221

the first paper implementing a practical T-D market operation222

considering accurate network modeling/reconfiguration and un-223

certainties.224

Based on the state-of-the-art research, the main contribution225

of this work is summarized below.226

� We formulate the T-D coordinated UC&ED problem con- 227

sidering the distribution network reconfiguration. System- 228

independent scenario sets capture the uncertainty of renew- 229

able generation and elastic demand for each system. 230
� We propose a market paradigm for the T-D coordinated 231

UC&ED. This paradigm considers the coordination be- 232

tween different market stakeholders while protecting their 233

confidentiality, which ISOs can easily adopt. 234
� We extend the generalized Benders decomposition method 235

to a nested and stochastic version, which can efficiently 236

solve the proposed T-D coordinated market operation 237

model. We also theoretically prove and analyze the algo- 238

rithmic convergence. 239

II. MATHEMATICAL FORMULATION OF T-D COORDINATED 240

MARKET OPERATIONS 241

We detail the three-stage stochastic formulation and the con- 242

vexified AC branch flow for the distribution part in this section. 243

The overall formulation of the stochastic T-D coordinated UC 244

& ED is separated and distributed in the following subsections. 245

Note that the DC power flow is adopted in the transmission 246

level in order to mimic the industrial practice. In contrast, the 247

second-order cone programming (SOCP)-based convexified AC 248

branch flow formulation is adopted in the distribution network 249

to retain accuracy. 250

A. The First Stage: ISO’s UC Problem 251

The first stage solves a conventional transmission UC problem 252

with the optimal distribution network reconfiguration, which is 253

performed by the ISO. 254

K1 = min
uT
g,h,d

T
g,h,

iTg,h,zq,h,c

H∑
h

SUT
g uT

g,h + SDT
g d

T
g,h

+EωT

{
K2(x

∗
1, ω

T )
}
, (1a)

subject to 255

uT
g,h + dTg,h ≤ 1, ∀gT ∈ GT , ∀h ∈ H, (1b)

uT
g,h − dTg,h = iTg,h − iTg,h−1, ∀gT ∈ GT , ∀h ∈ H, (1c)

∑h

h−MOg+1
uT
g,h ≤ iTg,h, ∀gT ∈ GT , ∀h ∈ H, (1d)

∑h

h−MDg+1
dTg,h ≤ 1− iTg,h, ∀gT ∈ GT , ∀h ∈ H, (1e)

uT
g,h, d

T
g,h, i

T
g,h, zq,h,c ∈ {0, 1}, (1f)

where K2(x
∗
1, ω

T ) denotes the second-stage recourse and x∗
1 = 256

[uT ∗
g,h, d

T ∗
g,h, i

T ∗
g,h]. “*” stands for obtained and fixed decisions. 257

Constraints (1b) and (1c) enforce the binary exclusiveness of 258

the start-up and shut-down indicators; constraints (1 d) and (1e) 259

model the minimum ON/OFF time; constraint (1f) indicates the 260

binary nature of the variables. Note that there is no distribution 261

configuration variable, i.e., zq,h,c, in the objective function and 262

constraints, which is determined based on the information sent 263

back from the DSO’s stage. 264

Gabriel Yin
Please remove the space between 1 and d within the parenthesis.
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B. The Second Stage: ISO’s ED Problem265

The second stage formulates a transmission-level ED problem266

based on the UC decisions delivered from the first stage, which267

is detailed in (2). For each ωT :268

K2(x
∗
1, ω

T ) = min
pT
g,h,s

T
�,h

H∑
h

⎧⎨
⎩

GT∑
gT

fT (pTg,h) +
LT∑
�T

PCT
� s

T
�,h

⎫⎬
⎭

+
∑
c

wc · EωD
c

{
K3(x

∗
2,y

∗, ωD
c )

}

(2a)

subject to269

GT∑
gT |C(gT )=nT

pTg,h −
I∑

ic|C(ic)=nT

pic,h +
∑

rT |C(r)=nT

pTr,h−

FT∑
fT |S(fT )=nT

pTf,h +

FT∑
fT |N(fT )=nT

pTf,h =

L∑
�T |C(�T )=nT

{ LT
�,h(ω

T )− sT�,h }, ∀nT , ∀h, (2b)

pTf,h = X−1
fT [δ

T
n|S(nT )=fT ,h − δTn|N(nT )=fT ,h], ∀fT , ∀h,

(2c)

− PT,max
f,h ≤ pTf,h ≤ PT,max

f,h , ∀fT , ∀h, (2d)

iT,∗
g,hP

T,min
g,h ≤ pTg,h ≤ iT,∗

g,hP
T,max
g,h , ∀gT , ∀h, (2e)

0 ≤ pTr,h ≤ PT,max
r,h (ωT ), ∀rT , ∀h, (2f)

pTg,h − pTg,h−1 ≤ RUT
g (1− uT,∗

g,h) + uT,∗
g,hP

T,min
g,h , ∀gT , ∀h,

(2g)

pTg,h−1 − pTg,h ≤ RDT
g (1− dT ∗

g,h) + dT,∗
g,hP

T,min
g,h , ∀gT , ∀h,

(2h)

where K3(x
∗
2,y

∗, ωD
c ) denotes the third-stage recourse, x∗

2 =270

[z∗q,h,c], and y∗ = [p∗ic,h]. wc stands for the weight of different271

distribution systems pertaining to the importance of the corre-272

sponding system. For instance, hospitals and military regions273

require higher priority of electricity supply, which results in274

higher weight wc in this model (wc ∈ (0, 1] and
∑

wc = 1). We275

also adopt the piecewise-linear thermal generation cost function276

asfT (·) and enable load shedding to retain feasibility. Constraint277

(2b) enforces the active power balance, and constraint (2c)278

represents the DC power flow equation in the transmission lines.279

Line flow constraints and active power generation constraints280

for thermal generators are described in constraints (2 d) and281

(2e), respectively. In constraint (2f), the renewable generation is282

limited within the uncertain upper bound w.r.t. the scenario index283

ωT . For brevity, we only give the scenario index to uncertain284

parameters, but the variables should be associated with the285

scenario index as well. Besides, constraints (2 g) and (2 h)286

represent the ramp-up/down limits, respectively.287

C. The Third Stage: DSO’s ED Problem 288

From DSO’s perspective, the third stage establishes a 289

distribution-level ED, as shown in (3). Since DER generators are 290

fast-responsive, their UC decisions are not considered. However, 291

the distribution network is reconfigurable [15] and controlled by 292

the ISO in the proposed T-D coordinated market operation. Note 293

that ωD
c for each c in the third stage is independent of each other 294

and ωT in the second stage. For each c and ωD
c : 295

K3(x
∗
2,y

∗, ωD
c ) = min

pD
g,h,c,s

D
�,h,c

H∑
h

⎧⎨
⎩

GD∑
gD

fD(pDg,h,c)

+

LD∑
�D

PCD
�,cs

D
�,h,c

⎫⎬
⎭ (3a)

subject to 296

PD,min
g,h,c ≤ pDg,h,c ≤ PD,max

g,h,c , ∀gD, ∀h, (3b)

−RDD
g,c ≤ pDg,h+1,c − pDg,h,c ≤ RUD

g,c, ∀gD, ∀h, (3c)

0 ≤ pDr,h,c ≤ PD,max
r,h,c (ωD

c ), ∀rD, ∀h,∀ωD
c , (3d)

0 ≤ yDmn,h,c ≤ xD
mn,h,cY

D,max
mn,h,c , ∀(m,n) ∈ FD

Q , ∀h, (3e)

0 ≤ yDmn,h,c ≤ Y D,max
mn,h,c , ∀(m,n) ∈ FD\FD

Q , ∀h, (3f)

(pDmn,h,c)
2 + (qDmn,h,c)

2 ≤ yDmn,h,cvm,h,c, ∀(m,n) ∈ FD, ∀h,
(3g)

xD
mn,h,c ≥ 0, ∀(m,n) ∈ FD, ∀h, (3h)

xD
mn,h,c = 0, ∀n ∈ AD

T , ∀h, (3i)

xD
mn,h,c + xD

nm,h,c = 1, ∀n ∈ FD\FD
Q , ∀h, (3j)

xD
mn,h,c + xD

nm,h,c = z∗q,h,c, ∀n ∈ FD
Q , ∀h, (3k)

∑
n:(m,n)∈FD

xmn,h,c = 1, ∀m ∈ AD\AD
T , ∀h, (3l)

∀nD, ∀h :

pDn,h,c =
∑

k:n→k

pDnk,h,c −
∑

j:j→n

(pDnj,h,c −Rnjy
D
nj,h,c), (3m)

qDn,h,c =
∑

k:n→k

qDnk,h,c −
∑

j:j→n

(qDnj,h,c −Xnjy
D
nj,h,c), (3n)

vn,h,c − vm,h,c ≤ M(1− xD
nm,h,c) + (R2

mn +X2
mn)y

D
mn,h,c−

2(Rmnp
D
mn,h,c +Xmnq

D
mn,h,c), (3o)

vn,h,c − vm,h,c ≥ −M(1− xD
nm,h,c) + (R2

mn +X2
mn)y

D
mn,h,c−

2(Rmnp
D
mn,h,c +Xmnq

D
mn,h,c), (3p)

pDn,h,c =
∑

gD |C(gD)=n

pDg,h,c +
∑

ic|C(ic)=n

p∗ic,h+

∑
rD |C(rD)=n

pDr,h,c −
∑

�D |C(�D)=n

{
LD
�,h,c(ω

D
c )− sD�,h,c

}
, (3q)

Gabriel Yin
Please remove the space between 2 and d within the parenthesis.

Gabriel Yin
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Gabriel Yin
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qDn,h,c =
∑

gD |C(gD)=n

qDg,h,c +
∑

rDD|C(rD)=n

qDr,h,c

−
∑

�D |C(�D)=n

qD�,h,c(ω
D
c ), (3r)

V min
n,h,c ≤ vn,h,c ≤ V max

n,h,c, (3s)

where fD(·) represents the piecewise-linear cost function. The297

constraints for non-reconfigurable branches are identical to the298

transmission lines in the second-stage problem, while the con-299

straints for reconfigurable branches are with the reconfiguration300

decisions, as shown in constraints (3e) and (3f).301

We cast a SOCP relaxation for power flow modeling. Con-302

straint (3 g) is the convex second-order cone (SOC) constraint.303

Note that we neglect shunt impedances for simplicity. k, j,m304

are notations for connected buses. We also assume that the305

distribution networks can well control the voltage and reactive306

power performance. Hence, we only consider the reactive power307

in the distribution systems and no reactive power exchange will308

happen [24]. Future works include that the distribution systems309

can provide reactive power support to the transmission system,310

where our proposed model can also be adopted. Also, note that311

we employ the widely-adopted branch flow model for the SOCP312

relaxation [25] of the AC power flow. However, other SOCP313

relaxation techniques, including the bus injection model and its314

variants [26], could also be adopted in the proposed framework,315

given that the feasibility region is convex.316

To ensure the distribution network’s radiality, we also enforce317

constraints (3 h) - (3 l). Note that xmn are continuous vari-318

ables and will be either zero or one to keep arborescence [27],319

which retains model (3)’s convexity. Upon using this, we re-320

strict the distribution network information in the third stage,321

which protects the confidentiality of distribution utilities. Other322

constraints are with the typical branch flow model under SOCP323

relaxation [28].324

III. DECOMPOSITION-BASED SOLUTION STRATEGY FOR THE325

THREE-STAGE MARKET OPERATION326

In this section, we provide an efficient solution strategy to-327

wards the multi-scale and multi-stage SP problem for T-D coor-328

dinated market operation. As the original formulation follows329

a stage-decomposable structure, it can be readily tackled by330

the L-shaped method, as adopted in multiple works [17], [29].331

However, since the proposed T-D coordinated hierarchy is a332

three-stage problem, the L-shaped method needs to be nested. In333

this paper, we tailor a generalized nested decomposition based334

on the nested L-shaped method to facilitate the solution upon335

different and individual scenario sets. To be more concise, we use336

the compact form for equations in this section, and similarly, we337

only put the scenario indices (ωT ) and (ωD
c ) with the uncertain338

parameters.339

A. ISO’s Master Problem340

The ISO’s UC problem (1), i.e., the first-stage problem,341

serves as the master problem. The complicating variables in342

the master problem include the unit commitment decisions, i.e.343

ug,h, dg,h, ig,h (denoted by vector x1), and the reconfiguration 344

decisions, i.e. zq,h,c (denoted by vector x2). A compact form for 345

the master problem (1) is represented in (4). 346

M = min
x1,x2

c�1 x1 + 0�x2 + S∗
t , (4a)

subject to 347

A1x1 +B1x2 ≤ b1, (4b)

A2x1 +B2x2 = b2, (4c)

S∗
t = max

o∈O
{
αo
t + (βo

t1)
�x1 + (βo

t2)
�x2

}
, (4d)

where S∗
t denotes the maximum of cuts returned from the 348

second-stage subproblem, and constraint (4 d) includes the 349

optimality cuts returned from the second-stage problem with 350

the information of the second and third stages for all iterations. 351

B. ISO’s Subproblem 352

The second-stage problem (2), i.e., the ISO’s subproblem (St), 353

models the transmission-level ED, as shown in (5). 354

∀ωT : St(ω
T ) = min

y
c�2 y + S∗

d, (5a)

subject to 355

K1y = r1(ω
T ) : γ, (5b)

H1x
∗
1 +A3y ≤ b3 : φ, (5c)

S∗
d = max

o∈O,c

{
wc ·

[
αo
d + (βo

d1)
�y + (βo

d2)
�x∗

2

]}
: μ, (5d)

where x∗
1 and x∗

2 are delivered from the master problem, y 356

is the second-stage variable vector, including the generation 357

dispatch, load curtailment and line flows, etc. γ, φ and μ are the 358

dual vectors, whereas auxiliary variable S∗
d and constraint (5 d) 359

formulate the relaxed counterpart of the third-stage problem. 360

To update the optimality cut (4 d) in the master problem, we 361

calculate the subgradients as follows. 362

αo
t =

∑
ωT

PrωT

{
γ�r1(ωT ) + φ�b3 − μ�[αo

d + (βo
d2)

�x∗
2

−S∗
d/wc]}

βo
t1 = −

∑
ωT

PrωTH�
1φ; β

o
t2 = −

∑
ωT

PrωTβ�
d2μ.

C. DSO’s Subproblem 363

The third-stage problem (3), i.e., the DSO’s subproblem (Sd), 364

which is a convex SOCP model, formulates the distribution-level 365

ED, as shown in the compact form (6). Without loss of generality, 366

we group the affine constraints with the SOC one in constraint 367

(6b), as affine functions are a special case of SOC when K2 is a 368

zero matrix. 369

∀c, ∀ωD
c : Sd(wc, ω

D
c ) = min

z
c�3 z, (6a)

subject to 370

‖H2y
∗ +K2z+ e‖2 ≤ q�y∗ + p�z+H3x

∗
2 + r2(ω

D
c ),

(6b)
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where x∗
2 and y∗ are decisions delivered from the first-stage371

problem and the second-stage problem, respectively. Then we372

write the dual form of (6) in (7).373

Sdual
d (wc, ω

D
c ) = max

u,v

[
u�(H2y

∗ + e)− v(q�y∗ +H�
3 x

∗
2

+r2(ω
D
c ))

]
, (7a)

subject to374

K�
2 u+ v�p = c3, (7b)

‖u‖2 ≤ v, (7c)

whereu andv are the dual vectors of the Euclidean norm and the375

SOC, respectively. Note that this dual problem is also a convex376

SOC and only satisfies the weak duality. However, given the377

assumption that the nodal voltage constraint is not binding, there378

exists an interior in the primal and dual feasibility regions and379

hence Slater’s condition holds, which means the strong duality380

can be retained [30]. Then the subgradients can be calculated381

for the optimality cut in the ISO’s subproblem.382

αo
d =

∑
ωD

c

PrωD
c
[u�e− v · r2(ωD

c )];

βo
d1 =

∑
ωD

c

PrωD
c
[u�H2 − v · q]; βo

d2 = −
∑
ωD

c

PrωD
c
v ·H�

3 ;

D. Generalized Nested Decomposition Algorithm383

To cope with the proposed T-D coordinated hierarchy, we384

devise a generalized nested decomposition (GND) algorithm.385

The general procedure is demonstrated in Fig. 2. In particular,386

with an initial feasible point of the complicating variables de-387

termined from the initial master problem, the problem in each388

stage can deliver the optimal complicating variables back to the389

previous stage problem via creating the lower bounding affine390

cuts by subgradients. If any recourse is infeasible, a feasibility391

cut will be returned to the upper stages and repeat the loop in392

Fig. 2 [31]. For more details about the feasibility check, please393

see Appendix A. These cuts formulate the relaxed counterparts394

of the respective subproblems and hence decompose the overall395

problem. Each subsystem in the second-stage and third-stage396

can keep its own scenario set and return its own single cut.397

For multiple distribution systems in the third stage, they return398

multiple cuts to the second-stage problem based on the single cut399

from respective scenario sets. From the third stage to the second400

stage, it is promising to adopt the cut sharing [32] between401

each second-stage scenario to facilitate the solution, which does402

not compromise exactness. Besides, The non-anticipativity in403

any current stage is implicit since we only have one copy of404

wait-and-see variables in the previous stage. For the convergence405

proof, we first give the following assumption.406

Assumption 1. 1) The second-stage and third-stage problems407

are convex and have complete recourse; 2) all recourse stages408

have finite support; 3) all the scenario sets are stage-wise409

independent.410

Fig. 2. The GND algorithm workflow.

These are all mild assumptions in the current electricity mar- 411

ket in terms of system operations. For the first item, complete 412

recourse means that the subsequent-stage problems are feasible 413

given any first-stage variable. Current industrial ED problems 414

are mostly convex and feasible since the linearized cost curves 415

are adopted and all operating constraints are appropriately re- 416

laxed with penalty terms based on the ISO’s practice [33]. 417

For the second item, finite support means finite realizations of 418

scenarios for the problems, which is a basic assumption for all 419

scenario-based stochastic programming [34]. For the third item, 420

the transmission system should have an independent and differ- 421

ent scenario set with DSOs, as well as scenario sets between 422

DSOs. In conclusion, these assumptions are mild in practical 423

power systems. Then based on [20], consider the following 424

proposition. 425

Proposition 1: Provided with Assumption 1, constraints (4 d) 426

and (5 d) provide accurate approximations for the second stage 427

and the third stage, respectively. 428

Proof: From problem Sd to St, subproblem (7) is solved for 429

each ωD
c , yielding corresponding optimal dual solutions. As 430

problem Sd is convex and has complete recourse, the Slater’s 431

condition holds. Consider Q(x2,y, ω
D
c ) as the third-stage prob- 432

lem’s dual: 433

Q(x2,y, ω
D
c ) = u�(H2y + e)−

v(q�y +H�
3 x

∗
2 + r2(ω

D
c )).
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Based on the convexity of Sd, the subgradients provide:434

Q(x2,y, ω
D
c ) ≥ u�(H2y + e)−

v(q�y +H�
3 x

∗
2 + r2(ω

D
c )).

Taking the expectation according to the distribution of uncer-435

tainty ωd, and using the subgradient notations, we have:436

Q(x2,y) ≥ αd + β�
d1y + β�

d2x
∗
2.

Thus, the affine function below for iteration o gives an exact437

outer linearization for problem Sd and is returned to St:438

F(y : yo) = αo
d + (βo

d1)
�y + (βo

d2)
�x∗

2

When there are multiple Sd in the third stage, each of them439

returns the corresponding affine cut to St. Thus, the opti-440

mality of the problem follows from the complete recourse of441

all subsystems, and the approximation is exact if and only if442

Qo = maxo{F(y : yo))}, i.e., constraint (5 d). Proof is similar443

for the approximation of St in M , i.e., constraint (4 d). �444

Remark 1: As the approximation of constraints (4 d) and445

(5 d) is accurate for recourses, based on Remark 4 and Remark446

5 in [20], the cuts from subsequent stages formulate accurate447

approximations only containing the subgradient information.448

Hence, provided with Assumption 1, when the cuts provide exact449

approximations of later-stage problems, after a sufficiently large450

number of forward and backward iterations, the algorithm will451

converge to a solution within a sufficiently small gap from the452

global optimality with probability 1.453

Remark 2: The assumption that the nodal voltage constraint is454

not binding is mild [30] because the voltage deviations in distri-455

bution networks should be well controlled by voltage regulators.456

It is unnecessary to consider the local voltage stability issue in a457

market clearing problem from the ISO’s perspective since there458

is no such a market product. A Volt/VAR optimization problem459

could be solved by local utilities to tackle this issue once the460

hierarchical market is cleared [35].461

Remark 3: Note that in our case, M is a MIP. Hence, the462

final optimal solution satisfies the potential MIP gap without463

loss of generality as the affine cuts are created from convex464

subproblems. Practically, we admit that the GND’s algorithmic465

gap is hard to achieve zero, and together with the MIP gap, the466

final solution might not be optimal. However, the theoretical467

global optimality remains if convexity holds for recourses.468

Remark 4: The first three blocks in Fig. 2 are for the ini-469

tialization. However, if we can find an excellent warm-start470

initial point, the algorithm will converge faster. Besides, since471

the cut herein gives an affine approximation, cut sharing and cut472

selection can further contribute to the acceleration.473

Remark 5: The ISO’s master problem receives only the cut474

information consisting of subgradients from the lower-level475

problems. With only the subgradients, one cannot recover the476

full network information, which prevents the ISO from having477

the network information and thus protects the confidentiality.478

IV. NUMERICAL EXPERIMENTS479

To test the efficacy of the proposed T-D coordinated market480

operation and the solution strategy, we carry out case studies481

Fig. 3. Tran6+Dist7+Dist9 system topology [36].

on a modified Tran6+Dist7+Dist9 test system from [36] and a 482

Tran118+Dist30×5 from [4] for day-ahead UC & ED problems. 483

We solve all of the experiments by Gurobi on a Windows PC 484

with quad-core Intel i7-6700 CPU and 8 GB of RAM. 485

A. Tran6+Dist7+Dist9 Test Case 486

We depict the system topology in Fig. 3, which consists of one 487

transmission system (TS) and two radial ADNs. The original 488

test system [36] did not consider the resistance and reactive 489

demand/generation limits. In this paper, they are obtained via 490

a fixed R/X ratio (assume all distribution branches are with 491

the same configuration and R/X ratio is 1:2) and power factor 492

(assumed to be V-I 0.95 lagging) using the existing data. We also 493

have four switches K1˜K4 installed to enable the network re- 494

configuration of each ADN while the switch can be reconfigured 495

every 8 hours. 496

For uncertainties, one wind generator G3 and two PV units 497

RG1 in ADN1 and RG2 in ADN2 are added in the system, 498

whose power outputs are uncertain and sampled from three 499

different historical datasets obtained from [37]. Note that for the 500

renewables, we scale the historical data to a distribution level, 501

with the maximum output as 25MW. We also slightly reduce 502

the capacity of DG1 and DG2 in the original data. The hourly 503

load profile is also assumed to be stochastic that respects the 504

sampled demand scenarios and is distributed according to the 505

factor shown in Fig. 3. The penalty cost for the load shedding 506

is $1000/kWh to make the ADN decisions comparable with the 507

TS. 508

First, 150, 200, and 200 scenarios for the renewable generators 509

G3, RG1, and RG2 are sampled, and 180 scenarios for the 510

demand are sampled using Monte Carlo sampling from the 511

historical data, respectively. The number of joint renewable and 512

demand scenarios is very high and could jeopardize the compu- 513

tational efficiency. Then, we employ the Fast Forward/Backward 514

approach [38] in the GAMS SCENRED toolbox to reduce the 515

numbers of the joint renewable and load scenarios in the three 516

grids. Fig. 4 shows the sensitivity analysis of scenario number 517

reduction. We have a base scenario reduction Δ that has 5, 10, 518

and 12 scenarios for the TS, ADN1, and ADN2, respectively, 519

and we linearly increase the number of the desired scenarios as 520

shown in the x-axis of Fig. 4. It can be seen that using 10×Δ 521

scenarios has a solution gap of 2.12% compared with using 522

50×Δ scenarios. Hence, we argue that using 10×Δ scenarios 523

achieves the tradeoff between the accuracy and complexity. Note 524

that the scenarios are i.i.d. wc for the two distribution systems 525
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Fig. 4. Sensitivity analysis on the scenario number.

Fig. 5. Algorithmic performance in the Tran6+Dist7+Dist9 case.

are set equal in this study, and the convergence criterion ε is526

0.01%.527

Fig. 5 shows the algorithmic performance in this case. The528

GND algorithm converges in the 31th iteration. The total load529

shedding upon convergence is zero. The costs of the two ADNs530

start at extremely high levels in that the TS draws a large amount531

of energy from the distribution sides to reduce its power outputs532

in the first iteration. This phenomenon is because there is no533

restriction on the power exchange when the two ADNs have534

to feed the TS even with high load shedding in the local area.535

However, the injections from the TS to ADNs finally become536

incentivized as the operation cost of the conventional units in537

the TS is much lower than the load shedding price in ADNs, and538

the DER units in ADNs cannot fully support the local demands.539

Note that the solution reaches $36 449 in iteration 17, and it is540

within a gap of 0.14%, as shown in Fig. 5. Thus, if we have a541

slightly higher tolerance on the optimality, we can greatly reduce542

the computation time.543

Fig. 6 provides the unit commitment decisions as well as the544

network reconfiguration solutions of the master problem upon545

convergence. G1 is committed ON throughout the time due to546

Fig. 6. Tran6+Dist7+Dist9 commitment and reconfiguration solutions.

TABLE I
COMPARATIVE ANALYSIS ON ISOLATION AND COORDINATION

its low generation cost and large capacity. G2 is mainly used 547

during the twilight time since the PV generation is low at that 548

time, but the energy consumption is high. ADN1 changes its 549

topology once in this operation based on the optimized switch 550

decisions, whereas ADN2 remains the original topology. The 551

topology change inADN1 is mainly due to the capacity of lateral 552

3-7 at hour 16 cannot support the increasing demand of load L8 553

and L9, and lateral 3-4 can relieve the congestion pressure by 554

bifurcating the flow to two laterals, i.e., 4-5 and 4-6, towards the 555

demand nodes. 556

Besides, to illustrate the necessity of the T-D coordination, 557

we carry out the other two comparative experiments on isolated 558

UC&ED and report the results in Table I in comparison with 559

the results of the T-D coordinated case. IUCED1 mode means 560

that TS forecasts the boundary power demand as all demands 561

in the ADN, and IUCED2 mode forecasts it as the maximum 562

forecast demand minus the maximum generation outputs in the 563

ADNs. TDC − UCED stands for the proposed T-D coordi- 564

nated UC&ED setting. It can be observed from the table that in 565

both isolated modes, there exists a notable power mismatch, even 566

if the IUCED2 mode can fairly approximate the coordination 567

used by some current industry practice [4]. A small power 568

mismatch, however, can still raise severe conditions for system 569

Gabriel Yin
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TABLE II
MAXIMUM SOCP GAPS OF THE TWO ADNS (P.U.)

Fig. 7. Boxplot for voltage magnitudes of the two networks.

operators as it influences the system stability. We also notice570

that the received LMP in both ADNs is decreasing, which is571

due to the relieved line congestion by the distribution network572

reconfiguration considered in the T-D coordinated framework.573

This observation defends the necessity of adopting the network574

reconfiguration-embedded T-D coordination in the future mar-575

ket.576

We further conduct two additional analyses to illustrate the577

algorithmic performance.578

1). Exactness of the SOCP relaxation579

While the branch flow model adopted in this paper has been580

recognized as a nearly exact relaxation of the actual AC power581

flow [25], we further demonstrate its exactness by the SOCP582

gap, which is also a well-known index for evaluating the SOCP583

performance [39]. Table II tabulates the maximum SOCP gap584

values throughout scenarios in the two ADNs.585

Generally, the smaller the gap is, the higher exactness the586

formulation achieves [39]. It can be shown from Table II that our587

proposed model is accurate enough. Though this approximation588

still cannot fully replace a complete AC power flow model, it589

gives an excellent starting point for such analyses run by ISOs590

with superior computational efficiency. Fig. 7 also shows that591

under normal system conditions, the nodal voltage constraints592

are non-binding, which supports the strong duality of the SOCP-593

based subproblem.594

2). Sensitivity analysis for initial values595

To technically support Remark 4, we conduct a sensitivity596

analysis for initial values in the algorithm. Note that we are par-597

ticularly interested in the distribution reconfiguration variables’598

initial values since the unit commitment variables will render599

no infeasibility in subsequent stages. We use five cases of initial600

values for the sensitivity analysis.601

Fig. 8. Sensitivity analysis on the initial values.

� Case 1. Throughout the horizon, K1 = 1 and K2 = 0, 602

K3 = 1 and K4 = 0. 603
� Case 2. Throughout the horizon, K1 = 0 and K2 = 1, 604

K3 = 0 and K4 = 1. 605
� Case 3. Throughout the horizon, K1 = 1 and K2 = 1, 606

K3 = 0 and K4 = 0. 607
� Case 4. Throughout the horizon, K1 = 0 and K2 = 0, 608

K3 = 1 and K4 = 1. 609
� Case 5. The optimal configuration settings obtained by the 610

simulation. 611

It is straightforward that Case 1 and Case 2 give a feasible set 612

of initial values, while Case 3 and Case 4 give an infeasible one. 613

Case 5 serves as a comparison with a perfect initial value. Fig. 8 614

depicts their performance. It is shown that all five cases converge 615

to the optimal solution, whereas Case 1 and Case 2 spend fewer 616

iterations than Case 3 and Case 4, but Case 5 achieves the fastest 617

performance. The additional iterations spent in Case 3 and 618

Case 4 are mostly feasibility-check iterations, where distribution 619

systems return feasibility cuts. This experiment shows that a 620

feasible initial value leads to a better performance, whereas a 621

perfect initialization would further save the computational time. 622

B. Tran118+Dist34×5 Test Case 623

To test the scalability of the proposed method, we carry 624

out experiments on a Tran118+Dist34×5 test case modified 625

from [4], which consists of one IEEE 118-bus transmission 626

system and 5 IEEE 34-bus distribution systems. A similar data 627

modification such as R/X ratio and power factor is conducted 628

to make the original system suitable for our study. Moreover, 629

we also perform similar scenario generation and reduction for 630

the additional ADNs (only 20 scenarios are considered in each 631

ADN, and 10 scenarios are considered in the TS). The load 632

shedding cost is set as$1000/kW in ADNs to keep comparability. 633

Three cases with different stopping criteria ε for the GND 634

algorithm, namely 3%, 1%, and 0.1%, are set up to test the 635

algorithmic performance in a large system. Fig. 9 shows the 636

comparative results. The boundary purchase here is defined by 637

the sum of multiplications between boundary LMPs, which are 638
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Fig. 9. Comparative analysis with different stopping criteria.

the dual values of the boundary nodal balance constraints in639

the second stage, and the power injections from the TS. We640

multiply the total ADN cost and the purchase cost by 10 to make641

costs comparable. It can be observed that the convergence speed642

greatly depends on the choice of the stopping criterion. And643

the algorithm spends a great number of iterations to close the644

gap between 1% and 0.1%, which is also a feature of optimality645

conditioned algorithms.646

The CPU time for the case when ε = 1% is around 4.5 hours,647

which is acceptable considering such a stochastic, complex,648

and accurate modeling for both transmission and distribution649

systems. However, directly running the corresponding deter-650

ministic equivalent SP problem drains up the RAM and returns651

no solution. This observation defends the necessity of using652

the proposed decomposition technique for acceleration. Note653

that with a more powerful simulation platform, such as high-654

performance CPU clusters, solving all the second-stage and655

third-stage subproblems with each scenario realization could656

be implemented in parallel, which can significantly reduce the657

computational time.658

V. CONCLUSION659

To help the ISO with tackling the increasing system inter-660

mittency from the active distribution system and reduce the661

boundary power mismatch, we propose a T-D coordinated mar-662

ket paradigm including UC and ED. This work is mainly from663

the ISO’s perspective to optimize its daily operation considering664

the DSO’s performance. A generalized nested decomposition665

method is tailored and efficiently decomposes the problem,666

which greatly facilitates the solution. The theoretical conver-667

gence proof of this algorithm is also articulated. Numerical ex-668

periments corroborate the effectiveness of the proposed strategy669

and show the necessity of the T-D coordination.670

Future studies include exploring more effective cut selection671

from the convex relaxation of subproblems, e.g., the Lagrangian672

dual cut, to reduce the computational time. Besides, with the673

increasing DER installation in distribution systems, similar674

coordinations between DSOs and microgrids await in-depth 675

investigation. 676

APPENDIX A 677

FEASIBILITY CHECK 678

We provide two alternatives for eliminating the infeasibility 679

issue. 680

A. First Alternative: Feasibility-Check Subproblem 681

Upon infeasibility, a feasibility-check subproblem for the 682

third-stage problem will need to be solved and return a feasibility 683

cut to the second stage. Note that the second stage will not 684

incur any infeasibility since the transmission ED problem has no 685

integer and the load shedding variables enforce the feasibility of 686

operational constraints. Hence, we only formulate the third-stage 687

feasibility-check problem, as shown in (A-1). 688

∀c : min
jmn,h,c

H∑
h

∑
mn

j+mn,h,c + j−mn,h,c, (A-1a)

subject to 689

Constraint (3b)-(3˜g), (3m-3˜s), (A-1b)

xD
mn,h,c ≥ 0, ∀(m,n) ∈ FD, ∀h, (A-1c)

xD
mn,h,c = 0, ∀n ∈ AD

T , ∀h, (A-1d)

xD
mn,h,c + xD

nm,h,c = 1 + j+mn,h,c − j−mn,h,c,

∀n ∈ FD\FD
Q , ∀h, (A-1e)

xD
mn,h,c + xD

nm,h,c = z∗q,h,c + j+mn,h,c − j−mn,h,c,

∀n ∈ FD
Q , ∀h, (A-1f)

∑
n:(m,n)∈FD

xmn,h,c = 1, ∀m ∈ AD\AD
T , ∀h, (A-1g)

j+mn,h,c, j
−
mn,h,c ≥ 0, ∀(m,n) ∈ FD, ∀h, (A-1h)

If we write in a compact form and for each scenario, we attain 690

(A-2). 691

∀c, ∀ωD
c : Sd(wc, ω

D
c ) = min

j
j, (A-2a)

subject to 692

‖H2y
∗ +K2z+ e‖2 ≤ q�y∗ + p�z+ k�j+H3x

∗
2 + r2(ω

D
c ),

(A-2b)

where j+mn,h,c and j−mn,h,c are positive slack variables imposed 693

on the distribution reconfiguration constraints, j is their vector 694

form. After we solve (A-2), the feasibility cut can be formulated 695

as in (A-3). 696

u�(H2y
∗ + e)− v(q�y∗ + k�j+H�

3 x
∗
2 + r2(ω

D
c )) ≤ 0,

(A-3)

Note that any infeasible set of distribution reconfigurations will 697

incur infeasibility in all scenarios of this distribution network. 698

Hence, upon encountering an infeasible subproblem instance, a 699

feasibility cut will be generated and all other scenarios will be 700
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terminated because (A-3) contains enough feasibility informa-701

tion. The feasibility cut will be added into the second-stage prob-702

lem. Afterwards, the second-stage problem will be solved and703

add a cut containing both feasibility and optimality information704

to the first stage. Then the iteration continues from the first stage.705

This procedure is called Fast Forward and Fast Back [31], which706

also coincides with Fig. 2. One of this method’s benefits is that707

distribution networks can return their feasibility cut individually708

without compromising other distribution systems’ optimality.709

B. Second Alternative: Always-Feasible Third-Stage Problem710

As discussed in [40], we can simply replace the constraints711

in problem (3) with the ones in problem (A-1) and add a huge712

penalty for these slack variables in the objective function, which713

makes the third-stage problem always feasible. Again, as shown714

in (A-1), not all operational constraints should be relaxed but715

only the ones with integer variables as they are the potential716

sources of infeasibility.717

Note that, though without a concrete proof, evidence has718

been found that the Second Alternative appears to be more719

computationally efficient than the First Alternative [40] and720

corresponds to the ISO’s practice [33], but both methods are721

able to eliminate the infeasibility issue.722
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