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Abstract—This paper proposes a novel modeling framework and4
decomposition-based solution strategy combining stochastic pro-5
gramming (SP) and robust optimization (RO) to deal with multiplex6
uncertainties in coordinated mid- and long-term power system7
planning. The problem is formulated as a multi-year generation8
and transmission planning problem from an independent system9
operator (ISO)’s perspective to minimize both expansion and op-10
erational costs under binary and continuous uncertainties, i.e.,11
system component contingency and load/generation variation. N-k12
contingencies are captured in RO using the reformulated contin-13
gency criteria, while the load/generation uncertainty is considered14
in SP embedded with RO using operating scenarios generated15
from the historical data with spatiotemporal correlations. The16
original hybrid model is highly intractable, but the intractability17
can be relieved by the proposed decomposition strategy based on18
the column-and-constraint generation and L-shaped algorithms.19
We apply our model to perform long-term system planning under20
extremely high renewable penetration and investigate the case of21
100% renewables in long-term planning. Numerical experiments22
on multi-scale test systems verify the efficacy of the proposed23
approach.Q124

Index Terms—Coordinated planning, discrete and continuous25
uncertainties, stochastic programming, robust optimization,26
decomposition, 100% renewable penetration.27

NOMENCLATURE28

SETS:29

G/R/L Conventional generator / renewable generator /30

transmission line31

S /V Sending/receiving bus of transmission lines32

C Bus mapping of conventional generators, renew-33

able generators, and demand34

XG /XR Candidate conventional / renewable generator35

XL Candidate transmission line36

T Planning horizon (years)37

H Operation horizon (hours)38

M Planning / operation time index mapping39

N Control mapping between units and investable40

years41
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INDICES: 42

g / r / � Conventional generator / renewable generator / trans- 43

mission line 44

d Demand 45

n Bus 46

ω Scenario 47

k Iteration counter for C&CG algorithm 48

o Iteration counter for L-shaped algorithm 49

t / h Planning / operating time index. (t, h) ∈ M 50

PARAMETERS: 51

ICG
g,t/IC

R
r,t Investment cost for gth conventional / rth renew- 52

able generator in tth year [$] 53

ICL
�,t Investment cost for �th transmission line in tth 54

year [$] 55

OCg,h Operating cost for gth generator in hth hour 56

[$/MWh] 57

PCd,h Load-shedding cost for unserved load in dth de- 58

mand in hth hour [$/MWh] 59

BG /BL Investment budget for generators / transmission 60

lines [$] 61

Kt Contingency criterion for system units in tth year 62

A� Line reactance of �th transmission line under 63

base MVA [p.u.] 64

FL� Flow capacity of �th transmission line [MW] 65

PL
G
g Capacity limit of gth conventional generator 66

[MW] 67

Δn /Δn Angle limit of phase angle at nth bus [rad] 68

UNCERTAIN PARAMETERS: 69

PL
R
r,h(ω) Available active power of rth renewable generator 70

in hth hour [MW]. 71

Pd,h(ω) Active demand of dth load in hth hour [MW]. 72

VARIABLES: 73

xG
g,t/x

R
r,t Binary expansion decision for gth conventional / 74

rth renewable generator in tth year. x = 1 means 75

built; x = 0 otherwise. 76

xL
�,t Binary expansion decision for �th transmission line. 77

x = 1 means built; x = 0 otherwise. 78

yGg,t/y
R
r,t Binary availability indicator for gth conventional / 79

rth renewable generator in tth year. y = 1 means 80

available; y = 0 otherwise. 81

yL�,t Binary availability indicator for �th transmission 82

line. y = 1 means available; y = 0 otherwise. 83
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aGg,t / a
R
r,t Binary outage indicator for gth / rth generator. a =84

1 means outage; a = 0 otherwise.85

aL�,t Binary outage indicator for �th transmission line.86

a = 1 means outage; a = 0 otherwise.87

pGg,h(ω) Scheduled active power of gth conventional gener-88

ator in hth hour under scenario ω [MW].89

pRr,h(ω) Scheduled active power of rth renewable generator90

in hth hour under scenario ω [MW].91

rd,h(ω) Scheduled load shedding in dth demand in hth hour92

under scenario ω [MW].93

f�,h(ω) Active power flow through �th transmission line in94

hth hour under scenario ω [MW].95

δn,h(ω) Phase angle at nth bus in hth hour under scenario96

ω [rad].97

I. INTRODUCTION98

THE investigation on the operational patterns and eco-99

nomics of a power system with high renewable penetration100

attracts tremendous attention from both academia and indus-101

try. Despite the clean energy and zero operational cost that102

renewables have, the stochastic generation pattern of renewables103

challenges the reliability of power systems, especially when the104

grid requires a high level of reserves for contingencies. Thus,105

albeit the investment of renewables is greatly encouraged by106

the U.S. government and broader community [1], the system107

planning under high-level penetration of renewables needs to be108

further investigated.109

Heretofore, researchers have done extensive work on the110

uncertainty-based system planning [2]–[5]. On the one hand,111

generators and lines are the biggest reliability concern from112

an ISO’s perspective, which has been omnipresent in many113

operation problems, e.g., unit commitment problem [6] and114

transmission planning problem [2]. This type of uncertainty can115

be effectively tackled by robust optimization (RO), as described116

in [2] and [7]. The basic idea of RO is to find the worst-case117

scenario and then make preventative decisions, which in turn118

also makes the solution highly conservative. On the other hand,119

the uncertain nature of renewable energy and elastic demand is120

another challenge for the system planner. A significant amount121

of literature (e.g., [8] and [9]) also adopts RO to deal with this122

type of uncertainty by setting conservative boundaries. However,123

comparatively, stochastic programming (SP) yields less conser-124

vative solutions than RO, and we can leverage the historical125

data to generate scenarios. Particularly, for a large system with126

high renewable penetration, the spatiotemporal correlations of127

renewables and demand can be accurately captured by scenario128

generation, e.g., Monte-Carlo simulation together with a multi-129

stage scenario tree [10].130

Since the uncertainties are multiplex in today’s transmission131

networks, e.g., the binary status of generator/line and continuous132

generation/load volatility, the combination of SP and RO is a133

promising formulation with higher reliability. Recently, many134

works (e.g., [3], [5] and[11]) also consider the hybrid SP and RO135

formulation with only the continuous formulation, which pro-136

vides a limited evaluation on uncertainties. There are few works137

considering the contingencies of power system components and138

stochastic generation together in a generation and transmission 139

expansion problem (G&TEP), especially under high renewable 140

penetration levels. 141

The co-optimization of G&TEP under multiplex uncertainties 142

is a nontrivial problem due to its non-convexity and uncertainties 143

involved. A. Moreira et al. [4] integrated binary contingencies 144

with continuous uncertainties but did not explore the improve- 145

ment of algorithms to facilitate the solution. L. Gallego et al. [12] 146

used heuristic algorithms to avoid solving an intricate model but 147

obtained local optima. It is not trivial, however, to evaluate how 148

far this obtained optimum is away from the global optimum. We 149

argue that for a large-scale economic assessment like the power 150

system planning, which may involve multiple planning years 151

and hence does not need to be solved in real time, it would be 152

better if we can have a guaranteed global optimum. This can be 153

viewed as an advantage of our proposed method compared with 154

those intelligent methods. Besides, most of the existing studies 155

solve single-year planning problems [11], [13], [14], which do 156

not capture certain aspects of power system planning such as 157

the timing of the commissioning or retirement of a generator. 158

In our study, however, the objective is to investigate whether an 159

ultra-high renewable installation in the system is beneficial or 160

not. Since the renewable units are widely considered as units 161

without variable operation costs [15], the economic payback of 162

renewable investment may outperform the conventional units 163

over the long term. Hence, to ensure a fair comparison between 164

different generation technologies, we also take the annuitized 165

investment cost into the consideration and intend to uncover the 166

cost-effectiveness of renewable investment, especially under an 167

ultra-high renewable penetration case. 168

In order to investigate a 100% renewable system, the cor- 169

relations between renewables, such as wind power in different 170

regions, wind and solar, wind and demand, etc., are also critical 171

in system operation and planning. At any instant, the system 172

should have enough generation from renewables to cover the 173

demand. However, the system planner has to take a system-wide 174

approach considering mutual support between regions and avoid 175

generation shortage at a particular location. Besides, adequate 176

transmission capacity, even in a degraded N-k line outage 177

scenario, is paramount for inter-regional energy exchange to 178

maintain the system energy balance. The final optimal G&TEP 179

investment ought to consider an optimal generation mix and 180

long-term renewable generation futures. Some researchers (e.g., 181

[14]) argue that 100% is less profitable than a generation mix 182

with conventional units, but this is actually sensitive to the 183

system settings. 184

In this paper, we propose an effective modeling and solution 185

approach for G&TEP towards 100% penetration of renewables. 186

The column-and-constraint generation (C&CG) method devel- 187

oped by [16] can decompose our problem to a master problem 188

and a subproblem. This method has been adopted in numerous 189

studies like [3], [6], [11], and become a mainstream solution 190

methodology for multi-stage RO problems. Besides, as reported 191

in [11] and [4], solving subproblems consumes the majority 192

of the computational time. We propose to apply the L-shaped 193

method [17] to further facilitate the solution of subproblems, 194

which also enables parallel computing. In the meantime, we 195
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Fig. 1. Framework of the proposed methodology.

specifically consider the short-term and long-term spatiotempo-196

ral correlations between renewables and load by leveraging the197

Monte-Carlo sampling on regional renewables. Fig. 1, provides198

a general framework of our proposed methodology.199

Compared with the state-of-the-art research, The main con-200

tributions of this paper are three-fold.201

1) We analyze the coordinated system planning under an202

ultra-high level of renewable penetration and investigate203

the potential issues of a 100% renewable penetration on204

an IEEE test system and the WECC system with specific205

parameter settings.206

2) To tackle multiplex uncertainties in the G&TEP, we207

propose a three-stage multi-year robust co-optimization208

model with a stochastic recourse. The robust counterpart209

captures the N-k contingency, whereas sampling-based210

scenarios considering spatiotemporal correlations be-211

tween renewables and load realize the demand/renewable212

uncertainty.213

3) The C&CG algorithm is leveraged to decompose the214

overall problem into a master-slave structure, and the215

stochastic subproblem is further reformulated based on the216

duality theory and decomposed by the L-shaped method.217

The computational efficiency is greatly improved, and218

multi-scale test cases verify the efficacy of the proposed219

methodology.220

The rest of the paper is organized as follows: Section III221

describes the mathematical formulation of the G&TEP model;222

Section IV presents the proposed solution strategy and the de-223

tailed flowchart; case studies and a scalability test are analyzed in224

Section V and Section VI, respectively; Section VII summarizes225

this paper with several remarks.226

II. MATHEMATICAL FORMULATION OF THE GENERATION AND227

TRANSMISSION PLANNING228

We provide the detailed mathematical formulation of the229

multiplex uncertainty-based G&TEP in this section. First, we230

show the deterministic equivalent form (DEF) of the three-stage231

formulation of the hybrid SP and RO model in (1). The term232

“stage” we used here refers to the mathematical structure of the 233

proposed optimization framework. 234

min
xG
g,t,x

R
g,t,

xL
�,t

T∑
t

(
XG∑
g

ICG
g,tx

G
g,t +

XR∑
g

ICR
r,tx

R
r,t +

XL∑
�

ICL
�,tx

L
�,t

)

+ max
aG
g,t,a

L
�,t

Eω

{
min

pG
g,h,rd,h

H∑
h

[ G∑
g

OCg,hp
G
g,h(ω)

+

D∑
d

PCd,hrd,h(ω)

]}
(1)

subject to 235

T∑
t

⎧⎨
⎩

XG∑
g

ICG
g,tx

G
g,t +

XR∑
g

ICR
r,tx

R
r,t

⎫⎬
⎭ ≤ BG, (1a)

T∑
t

⎧⎨
⎩

XL∑
�

ICL
�,tx

L
�,t

⎫⎬
⎭ ≤ BL, (1b)

∀∗ ∈ {g, r, �}, ∀(∗, t) ∈ N(∗, t) :
T∑

t′ �=t

x∗,t′ = 0, (1c)

T∑
t′≥t

y∗,t′ = (T − t+ 1) · x∗,t, (1d)

∑
t′<t

y∗,t′ = 0, (1e)

G∑
g

aGg,t +
R∑
r

aRr,t +
L∑
�

aL�,t ≤ Kt, ∀t, (1f)

∀ω :

G∑
g|C(g)=n

pGg,h(ω) +

R∑
r|C(r)=n

pRr,h(ω)−
L∑

�|S(�)=n

f�,h(ω)+

L∑
�|V (�)=n

f�,h(ω) =
D∑

d|C(d)=n

{ Pd,h(ω)− rd,h(ω) },∀n, ∀h,

(1g)

f�,h(ω) = yL�,t(1− aL�,t)A
−1
�

· [δn|S(�)=n,h(ω)− δn|V (�)=n,h(ω)],

∀� ∈ L, ∀(t, h) ∈ M, (1h)

− yL�,t(1− aL�,t)FL� ≤ f�,h(ω), ∀� ∈ XL, ∀(t, h) ∈ M, (1i)

f�,h(ω) ≤ yL�,t(1− aL�,t)FL�, ∀� ∈ XL, ∀(t, h) ∈ M, (1j)

− (1− aL�,t)FL� ≤ f�,h(ω), ∀� ∈ L\XL, ∀(t, h) ∈ M, (1k)

f�,h(ω) ≤ (1− aL�,t)FL�, ∀� ∈ L\XL, ∀(t, h) ∈ M, (1l)
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pGg,h(ω) ≤ yGg,t(1− aGg,t)PL
G
g , ∀g ∈ XG, ∀(t, h) ∈ M, (1m)

pGg,h(ω) ≤ (1− aGg,t)PL
G
g , ∀g ∈ G\XG, ∀(t, h) ∈ M, (1n)

pRr,h(ω) ≤ yRr,t(1− aRr,t)PL
R
r,h(ω), ∀r ∈ XR, ∀(t, h) ∈ M,

(1o)

pRr,h(ω) ≤ (1− aRr,t)PL
R
r,h(ω), ∀r ∈ R\XR, ∀(t, h) ∈ M,

(1p)

Δn ≤ δn,h(ω) ≤ Δn, ∀n, ∀h, (1q)

The objective function (1) formulates the investment cost of236

the proposed generator and transmission line expansions, plus237

the operating cost of scheduled conventional generators and238

possible load shedding.239

Constraints (1a)-(1b) model the investment budget of both240

generators and transmission lines, which construct the first-stage241

feasible region. Constraints (1c)-(1e) represent that once an242

investment is made in year t, the component will be available for243

the rest of the planning horizon. Control sets N(∗, t) represent244

the mapping between the candidate units and planning time,245

in which we categorize the candidate units based on the in-246

vestable years. These constraints formulate the constraint space247

for the first stage. Constraint (1f) shows the N-k criteria for both248

generators and transmission lines, where Kt can be adjusted249

to perform different contingency analyses. This constraint is250

in the second-stage (the second-stage objective function can251

be regarded as {0	a}, in which a is the vector of the outage252

indicators) formulating the uncertainty set [18]. This uncertainty253

set is discretely polyhedral.254

For the third-stage, we first explain the relationship between t255

and h. Since we consider a long-term planning problem, travers-256

ing 8760 hours for a whole year renders heavy intractability in257

this model. Hence, we consider a 24-hour operation for the third258

stage as an analysis of hourly dispatch in one typical day. This259

operation is also adopted in [14]. Then the time index mapping260

set M can be described as261

M = {(t1, h1), ..., (t1, h24), (t2, h25), ...(t2, h48), ...} .
We also note that this design further generalizes the appli-262

cation of selecting representative hours/days. When a system263

planner intends to select more representative hours to perform264

the G&TEP study, it is trivial to adjust the setM by increasing the265

number of hours. This also shows that our proposed framework266

is highly flexible and general to be expanded to the extent the267

system planner would like to use in G&TEP problems.268

Notably, the outage indicator in our formulation is a day-269

based variable. As we indicated, the third-stage problem can270

be regarded as a 24-hour economic dispatch problem. For271

such operation problems, the contingency is often considered272

throughout the operation horizon, i.e., 24 hours [19]. Practically,273

94% of the planned and operational outage have a duration of274

over 2 hours and 34.6% of them are over 48 hours [20]. In275

some works of system planning, the horizon-long contingency276

is also adopted [5]. For the sake of simplicity, since we choose277

one representative day for one year with multiple uncertain278

scenarios, we slightly abuse our notation and use a year-based279

index to represent a day-based variable, e.g.,aGg,t. Besides, for the 280

third-stage operation problem, we choose using one represen- 281

tative day with multiple scenarios to investigate the short-term 282

correlation between regional renewables and load, which can be 283

better captured by hourly operations, as also adopted in [14]. 284

Particularly, constraint (1g) is the nodal balance constraint, 285

and constraint (1h) defines the DC line flow equations. Note 286

that here, we slightly abuse the notation that the per unit reac- 287

tance A� should be normalized under the system base MVA. 288

Constraints (1i)-(1l) are line flow limitation constraints for 289

both candidate and existing lines. Constraints (1m)-(1p) are the 290

generation capacity constraints for both candidate and existing 291

conventional and renewable generators. Note that the renewable 292

generators can be dispatched, and thus we permit the renewable 293

curtailment. Constraint (1q) shows the phase angle limitation. 294

We can find that all of the third-stage variables are associated 295

with the scenario index ω for different realizations of renewable 296

generation and load. Note that the binary variables and the 297

variable multiplications such as in (1h), (1i), (1j), (1m) and (1o) 298

render this model mixed-integer nonlinear. 299

The proposed model (1) is a very general framework for the 300

hybrid stochastic and robust optimization-based system plan- 301

ning and can be easily adjusted or expanded to include more 302

constraints regarding various research directions or industrial 303

applications. In our case studies, for example, we do not have 304

any existing generator and we can hence disregard constraints 305

(1n) and (1p) in the formulation. We also modify (1) to incorpo- 306

rate unique case settings such as the regional N-1 contingency 307

and multiple investments in one candidate bus, which can be 308

achieved by replacing constraint (1f) with (1r) and adding con- 309

straint (1s) respectively as shown below. 310

Gz∑
g

aGg,t +

Rz∑
r

aRr,t +

Lz∑
�

aL�,t ≤ Kt, ∀t,∀z ∈ Z, (1r)

G∑
g|C(g)=ncg

xG
g,t +

R∑
r|C(r)=ncr

xR
r,t ≤ 2, ∀t,∀n, (1s)

where z denotes the region indicator, Z is the total region set, 311

ncg denotes the candidate bus for thermal generators, and ncr 312

denotes the candidate bus for renewable generators. 313

III. PROBLEM DECOMPOSITION AND SOLUTION STRATEGY 314

The model described in Section III presents an intractable 315

three-stage mixed-integer nonlinear problem with stochastic 316

recourse. However, we can decompose the original problem into 317

a structure of mixed-integer linear programming (MILP) master 318

problem and mixed-integer bilinear subproblem, which can be 319

solved iteratively based on the theory of the C&CG algorithm 320

[16]. Linear relaxation techniques can tackle the nonlinearity 321

of the subproblem. Besides, the subproblem can be further 322

decomposed by the L-shaped method [17]. 323

Fig. 2, depicts the overall solution workflow. Generally, we 324

adopt the C&CG algorithm to decompose the problem into a 325

master-slave structure, and the L-shaped algorithm then further 326

decomposes the subproblem by different scenarios. We will 327
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Fig. 2. Workflow of the proposed algorithm.

explain the procedure and notations of Fig. 2, in the problem328

formulation. To be more concise, we use compact form below.329

A. Master Problem330

We formulate the master problem in the C&CG procedure331

as in (2). x denotes the first-stage variables, z denotes the third-332

stage variables with iteration indexk′, which encloses all the past333

iterations before the current iterationk. IC andPC represent the334

vectors of investment costs and penalty costs, whereas pG and r335

denote the vectors of generator dispatch and load shedding. φ is336

an auxiliary variable that formulates a relaxed lower bound of the337

second-stage problem. The constraints for third-stage variables338

are (2d). Note that the second-stage variables a are fixed here,339

which are delivered from the subproblem. Hence, the master340

problem now becomes a deterministic MILP problem that can341

be efficiently tackled via off-the-shelf solvers. Here, x includes342

the first-stage variables, i.e., xG
g,t, x

R
r,t, x

L
�,t, y

G
g,t, y

R
r,t, y

L
�,t and z343

includes the third-stage variables, i.e., pGg,h, p
R
r,h, rd,h, f�,h, δn,h.344

MP = min
x,z

f(x) + φ (2)

subject to 345

Constraints (1a)-(1e) (2a)

f(x) = IC	x, (2b)

φ ≥ Eω

{
OC	pG +PC	r

}
, ∀k′ ≤ k, ((2c))

Constraints (1g)-(1q), ∀k′ ≤ k (2d)

B. Subproblem 346

The subproblem of the C&CG procedure is constructed from 347

the second- and third-stage problems, i.e., the problem deter- 348

mining the worst-case scenario of contingency. Here, a includes 349

the second-stage variables, i.e., aGg,t, a
R
r,t, a

L
�,t. 350

max
a

Eω

{
min
p,r

OC	pG +PC	r
}

(3)

subject to 351

Constraints (1f)-(1q). (3a)

Note that the first-stage variables in the constraints become 352

fixed parameters obtained from the master problem in the pre- 353

vious iteration. Since the inner minimization problem of (3) 354

has linear programming characteristics, according to the strong 355

duality theory, it is equivalent to rewrite (3) to its dual form (4), 356

after giving an objective handle for the second-stage. 357

Sub = max
a

0	a + Eω

{
max
π

Q(a,π)
}

(4)

subject to 358

Q(a,π) ∈ Γa,π, (4a)

where Q(a,π) represents the dualized objective function, π 359

is the vector of all dual variables in (3) and Γa,π consists of 360

the constraint space. For better demonstration, problem (4) is 361

further altered to a minimization problem (5) where we rewrite 362

Γa,π in the form of (5a)-(5c). Specifically, (5a) constructs the 363

uncertainty set, (5b) formulates the operational constraints, and 364

(5c) ensures the dual feasibility of the KKT condition. 365

Sub = min
a

−0	a + Eω

{
min
π

−Q(a,π)
}

(5)

subject to 366

Constraint (1f), (5a)

D(ω)π ≤ r(ω)−C(ω)a, (5b)

π ≥ 0. (5c)

Note that in the objective function, Q(a,π) includes the first- 367

stage decisions x∗ determined from the master problem. This 368

subproblem shows a typical two-stage stochastic mixed-integer 369

bilinear minimization structure. Furthermore, linear relaxation 370

techniques, e.g., the Big M method (see Appendix A), can 371

effectively relax the bilinear parts without sacrificing accuracy. 372

As the binary nature of the integer variables tightens the convex 373

relaxation, we can ensure the accuracy of the obtained solution. 374

According to the stochastic L-shaped method [17], the two-stage 375
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mixed-integer stochastic program with linear recourse and finite376

support is also decomposable, as shown in the following.377

1) L-shaped Master Problem:

Sub−M = min
a

−0	a + η (6)

subject to378

Constraint (1f), (6a)

αo′ + β	
o′a ≤ η, ∀o′ ≤ o (6b)

In the L-shaped master problem, η is an auxiliary variable,αo′379

andβo′ are subgradients computed from the dual of the L-shaped380

subproblem, which will be discussed in the next subsection. Note381

that this formulation is for the single-cut L-shaped algorithm.382

2) L-shaped Subproblem:

Sub− S(ω) = min
π

−Q(a∗,π) (7)

subject to383

D(ω)π ≤ r(ω)−C(ω)a∗ : ξ(ω), (7a)

π ≥ 0. (7b)

When the L-shaped master problem yields an optimal solution384

of a∗, the subproblem receives this solution and solves the oper-385

ation problem. Let ξ∗(ω) denote the optimal dual solution of the386

operation constraints (7a). After solving ω individual L-shaped387

subproblems, which can be done in parallel, the subgradients for388

each iteration can be computed as follows.389

αo =
∑
ω

Prob(ω)ξ∗o(ω)
	r(ω),

βo = −
∑
ω

Prob(ω)C(ω)	ξ∗o(ω).

Afterwards, the L-shaped master problem receives an opti-390

mality cut (6b). Finally, the inner iteration loop for the L-shaped391

procedure determines the final worst-case contingency a∗ and392

sends it back to the C&CG master problem. As we enable load393

shedding, the feasibility of all problems is guaranteed, and the394

feasibility cut is therefore negligible.395

The proposed algorithm guarantees its convergence by the396

finite extreme points of the uncertainty set and finite support397

in the second-stage stochastic recourse according to the con-398

vergence analysis [16] and [17]. For the convergence speed,399

according to Fig. 2, the C&CG procedure does not influence the400

convergence of the embedded L-shaped method, which means401

we still retain the fast convergence of the C&CG method [16].402

The convergence of the C&CG part relies on the convergence403

of the L-shaped algorithm, which is guaranteed by the finite404

support in the stochastic recourse. The motivation of leveraging405

the L-shaped method for the subproblem is that solving the406

original subproblem consumes the majority of the computational407

time, as reported in [4] and [11]. We enjoy the merit of parallel408

computing to facilitate solving subproblems when the L-shaped409

method is applied.410

Fig. 3. System topology of the modified IEEE 30-bus system.

TABLE I
DATA FOR CANDIDATE GENERATION UNITS

IV. CASE STUDIES 411

This section provides results and discussions for case studies 412

on a modified IEEE 30-bus system based on [21]. We aim 413

to investigate the benefit of ultra-high renewable penetration 414

towards 100% in a long-term planning problem. We implement 415

all of the experiments in GAMS 25.0.3 [22] with CPLEX 12.8 416

and run it on a 2.60GHz Windows PC with a 6-core Intel i7 CPU 417

and 8GB RAM. We also leverage a GAMS-embedded parallel 418

computing tool, i.e., Gather-Update-Solve-Scatter (GUSS) [23], 419

for the L-shaped subproblem to improve the computational 420

efficiency. 421

To illustrate our proposed methodology, we modify the IEEE 422

30-bus system to have reduced transmission lines and no existing 423

generators. Fig. 3, provides the detailed topology, where the blue 424

and orange buses indicate the candidate locations for building 425

wind and solar generators, respectively. Thermal generators 426

can be invested in any load bus. The dashed lines indicate 427

the candidate transmission lines. Table I shows the investment 428

information, whose reference can be found in [24]–[26]. The 429

modified IEEE 30-bus system has a total daily peak power 430
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Fig. 4. Regional scenario (10 for each).

demand as 2,000 MW, distributed to the three regions. And we431

set the load shedding penalty cost as $1,000/MWh.432

A. Scenario Generation & Reduction433

There are three regions in the system, where different scenario434

sets of renewable and demand are applied. To verify the invest-435

ment performance considering the spatiotemporal correlation436

between renewables and load, we create the scenario set for437

each region individually by using Monte-Carlo simulation on438

three different datasets of renewable output from [27]. Fig. 4,439

depicts the regional 24-hour sequential wind, solar, and demand440

scenarios. The average capacity factors of wind and solar are441

45.14% and 28.86%, respectively. We also assume that the two442

neighbored wind buses in Fig. 3, share the same wind output443

time series, and one can easily simulate scenarios with respect444

to different time series for more detailed spatiotemporal studies.445

For the spatiotemporal correlations between renewables and446

load, after sampling on three different datasets with respect to447

three different regions, we apply the Fast Backward/Forward448

method embedded in the GAMS SCENRED toolbox to reduce449

the scenario number according to the balance between the450

number of scenarios and the solution accuracy. This strategy is451

generally an approximation of the complete scenario tree bench-452

marked by different criteria such as the Fortet-Mourier metric453

[28] and Lr-distance [29], which have been widely adopted454

in many stochastic system planning works e.g. [30] and [31].455

To capture the spatiotemporal correlations between renewables456

and demand, we use three temporal datasets for real renewable457

outputs and demand in three forecast zones in the ERCOT area as458

a basis for our Monte-Carlo sampling to create the scenario sets.459

With both the demand and renewable uncertainties being taken460

Fig. 5. Comparison for different sizes of scenarios.

into consideration, the proposed G&TEP framework can yield 461

planning results according to the correlations between multiplex 462

uncertainties. It is also imperative to indicate that a more accurate 463

and efficient scenario generation/reduction technique concern- 464

ing the spatiotemporal correlation between uncertainties is of 465

great future research interest, to which our proposed framework 466

in this paper can easily adapt. 467

To balance the tradeoff between the accuracy and tractability, 468

we test different scenario sets by running a one-year plan- 469

ning problem where two respective investments on solar and 470

wind generators are mandatory, as shown in Fig. 5, and the 471

highest computational time stands for the highest time of 472

solving subproblems among all iterations. Since the difference 473
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in objective function values between 100 scenarios and 1000474

scenarios is within 2%, we argue that the set of 100 scenarios475

is accurate enough to perform the following analyses. Besides,476

Fig. 5, also validates the necessity of using decomposition477

techniques for solving stochastic subproblems, as the compu-478

tational burden grows exponentially with the increasing number479

of scenarios in the DEF problem as in [3] and [11], but grows480

linearly in the L-shaped problem in our work.481

B. Case Studies: Towards 100% Renewable Penetration482

We design three cases to show the pathways to achieve 100%483

renewable penetration. We apply the N-1 criterion to each region.484

Each candidate bus can build two generators in each year. The485

algorithmic convergence gap ε2 is set to be 0.1%, and the solver’s486

MIP gap is set as 0.01%.487
� Case 1: $900M generation investment budget (6yrs);488
� Case 2: $9,000M generation investment budget (6yrs);489
� Case 3: $9,000M generation investment budget. Thermal490

units can only be installed in the first year. All the thermal491

units will phase out by 20% capacity per year (6yrs) with492

a salvage income.493

To be more practical, for thermal units, we consider a 5%494

annual inflation rate of the fuel price. For renewable energy,495

the investment cost has a discount factor of 5% per year as the496

technology develops. The salvage price of phased out thermal497

generators is 40% of the investment cost. The total system498

demand also increases by 5% per year. Table II shows the499

investment decisions, costs and system information obtained500

from the three cases.501

For the salvage income, we directly add a salvage income502

term in the objective function of (1). The salvage of generators503

includes the sales of the salvageable parts of the unit, recycling504

worn-out equipment, and reutilizing the designated real estate505

[31]. According to [32], the salvage value for generators is506

calculated based on a linear relationship with the proportion507

of the used life and the remaining life, resulting the following508

equation:509

S = Creplace · Rremain

Rcomponent

in which Creplace is the replacement cost that is about 80% of510

the initial investment cost, Rremain is the remaining life and511

Rcomponent is the component lifetime. We also refer to [33]512

for the lifetime of a pulverized coal power plant as 30 years.513

Thus, in year 6, the remaining lifetime of such unit is 24 years,514

and thus the salvage income should be 80% · (24/30) = 64%515

of the investment cost. Considering the demolition cost and the516

personnel cost, we set the salvage value for a thermal unit in517

our study as 40% of the investment cost. We will revisit Case 1518

and Case 2 in subsection E by considering the investment cost519

annuitization to further assess the economic aspects of renewable520

installations.521

1) General Investment Plan and Operation: For the generation522

investment, on the one hand, since we consider the N-1 criterion523

in each region, the system planner invests in a large amount of524

generation capacity, especially when the renewable is installed525

(e.g., the total capacity in Case 3 is 152.9% higher than the peak526

TABLE II
INVESTMENT PORTFOLIO REPORT FOR THE 30-BUS SYSTEM

* The numbers indicate the buses built with thermal, wind and solar.

load). While the system planner has already known the demand 527

increase rate for the later years, most of the new generation 528

capacity is invested in the first year to meet the peak demand 529

growth in the following years. However, since the renewable 530

installation is limited compared with the thermal installation, 531

and considering the yearly increasing system demand and the 532

unit contingencies every year, there are still investments after the 533

first year especially in Case 2 and Case 3 to ensure the system 534

reliability. Another noteworthy issue is renewable curtailment. 535

The peak curtailment in Case 3 is 18.29% when the average 536

curtailment across the scenarios also reaches 12.11%. They are 537

comparatively small since the excess renewable power can be 538

used to support other regions. Future works considering using 539

the curtailed energy to provide ancillary services and storage 540

charging can be envisioned. 541

On the other hand, for the transmission investment, new 542

transmission lines tend to be built in the first year to prepare for 543

the worst-case contingency in the subsequent years. The new 544

transmission build-out is mostly to accommodate the injections 545

from the new generators. Notably, lines 6-8, 12-15, and 6-28 546

are reported to be the ones with the most frequent outage under 547

the worst-case contingency. Thus, in the investment portfolio, 548

lines 7-8, 6-22, and 22-24 are always built in the three cases to 549

aid power transmission. The system finally achieves the 100% 550

renewable penetration level in the 6th year in Case 3. The 100% 551

is based on the generation capacity percentage. 552
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By comparing Case 1 and Case 2 in Table II, we can find that553

if we have a sufficient investment budget at the beginning, it is554

more profitable to invest in a proper generation mix of thermal,555

wind and solar technologies from the system perspective. Since556

we consider a long-term investment plan, the operation cost for 6557

years in Case 1 far outnumbers the investment cost, whereas the558

renewable generators only have a one-time cost for installation.559

By comparing Case 2 and Case 3 in Table II, we find that560

the operation cost is further greatly decreased in Case 3, but the561

investment cost and the load shedding cost increase significantly,562

which results in a higher total cost. However, as the investment563

cost of renewable technology decreases yearly, in the long-term564

planning, the system will tend to have higher renewable pene-565

tration approaching 100%, which will be detailed in subsection566

D.567

In the current setting, we do not consider the energy storage568

and the time-shifting demand response since we would like to569

investigate the cost-effectiveness of renewables only from their570

own economic aspects. However, it is imperative to state that571

considering 100% renewable energy without any energy storage572

or demand response is not beneficial for all circumstances. It573

can be envisioned that energy storage and demand response574

can greatly reduce the need for over-installation of renewable575

generation.576

2) Interregional Support With Spatiotemporal Correlations:577

The spatiotemporal correlations between renewables and re-578

gional differences of the uncertainty also influence the invest-579

ment portfolio of renewables. When we do not consider any580

storage device or time-shifting demand response in our model,581

there could be a large amount of load shedding in a particular582

region when the renewable generation in that region is very583

low. However, such a situation can be largely mitigated with584

adequate transmission capacity with the other regions since the585

variation of renewable generation output from each region tends586

to cancel out over a large geographical area to provide a more587

stable output. Hence, by using the proposed scenario generation588

and the optimization framework, the new generators are built in589

the way that they can provide interregional energy support when590

needed, based on their spatiotemporal correlations.591

On the one hand, from the long-term investment perspective,592

in Fig. 4„ the diurnal wind output in Region 1 is small, which593

incentivizes the investment of the solar unit at bus 5 and reduces594

the investment of wind units in the region. Besides, in Case 3,595

the lines connecting Region 2 and Region 3, i.e., line 15-18 and596

line 22-24, are all constructed to help Region 3 cover its demand597

as the wind output in Region 3 in a long run is relatively lower598

compared with the other regions.599

On the other hand, from the short-term operation perspective,600

in the 6th year of Case 3, we particularly analyze one operation601

scenario. Fig. 6, depicts the active power flow in the tie-lines602

with Region 1, i.e., lines 9-10, and 6-22. It can be seen that the603

power support from the other regions reaches the peak value at604

hour 10 due to the lack of local wind power in Region 1, but605

Region 1 can export active power to the other regions at night606

when the wind output increases. This phenomenon validates607

the interregional support when the spatiotemporal correlations608

between renewables and load are present.609

Fig. 6. Power transfer from/to Region 1: one scenario.

Fig. 7. Comparison in the contingency criterion.

C. Case Studies: Contingency Criterion 610

Next, we elaborate on the contingency criterion and the impact 611

of the worst-case contingency by comparing the following Case 612

4 with the previous Case 3. 613
� Case 4. We apply no contingency criterion in all regions, 614

i.e., the robust counterpart in the model is omitted. The 615

other settings are the same as Case 3. 616

Fig. 7, demonstrates the generator’s installation details of 617

these two cases. It can be seen from the results that when the 618

N-1 contingency criterion is applied for each region in Case 3, 619

the system needs to have more renewable generators installed to 620

secure the demand. Particularly for the worst-case contingency, 621

the system is prone to increase the investment in generators to 622

provide more contingency reserves, which is also one of the 623

reasons of the huge installations in Case 3. 624

D. Case Studies: Long-Term Cost-Effectiveness 625

To further elaborate the cost-effectiveness of long-term in- 626

vestment in renewables, especially for the 100% renewable 627

penetration, we carry out two case studies of a 12-year expansion 628

in the following: 629
� Case 5: $12,000M generation investment budget (12yrs); 630
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Fig. 8. Investment plans and system cost of the long-term planning.

� Case 6: $12,000M generation investment budget. Thermal631

units can only be installed in the first year. All the thermal632

units phase 10% capacity out per year (12yrs).633

It is straightforward that the 100% renewable penetration634

is accomplished in the 11th year in Case 6. We enable the635

transmission expansion between any two connected buses for636

the annually increasing demand, and the other system settings637

are the same as in the previous case studies. Fig. 8, depicts638

the investment plans and system costs. Accordingly, the salvage639

value of conventional generators is set as 25% of the investment640

cost in this case.641

In Case 5, the installation of one thermal unit is mainly to642

balance the load shedding caused by stochastic generation, even643

when the interregional support from renewables has already644

largely mitigated this issue. And in Case 6 when the condition645

changes that the thermal units are no longer able to fully provide646

energy, the system planner is still prone to invest one thermal647

unit due to the high load shedding cost. Though the 100%648

renewable case, i.e., Case 6, still has a slightly higher cost than649

Case 5, we argue that the final cost difference highly depends on650

how we choose the system parameters. Nonetheless, from these651

two cases, we can see the potential of renewable generation’s652

long-term cost-effectiveness. In Case 5 when the phasing-out653

is not allowed, the system in the 12th year still reaches 96.43%654

renewable penetration, which implies the long-term economic655

payoff is higher than conventional units. It should also be noted656

that different settings of renewable-based G&TEP studies could657

lead to different findings (e.g., [14]) but the proposed general658

framework still applies.659

E. Case Studies: Investment Annuitization660

In many investment studies, investors often consider annuiti-661

zation of the investment cost to distribute the investment over the662

planning horizon. Hence, in this section, we illustrate the effect663

of considering the annuitization of the investment cost with the664

TABLE III
INVESTMENT PORTFOLIO WITH THE INVESTMENT ANNUITIZATION

* The integrals denote the numbers of invested thermal, wind, solar generators, and line.

same settings of Case 1 and Case 2. We keep the same investment 665

budget as in Case 1 and Case 2, and consider a general annual 666

interest rate i of the investment as 6.04% computed from the 667

weighted average cost of capital (WACC) of 5.7% [34]. We adopt 668

the investment annuitizing method from Appendix A in [34] as 669

we first calculate the annual discount factor (DFt) by 670

DFt =
1

(1 + i)t
,

then the annualized capital cost (ACCg) and the discounted 671

investment cost (ICg,t) used in the objective function can be 672

computed as 673

ACCg = OCCg · i · (1 + i)LTg

(1 + i)n − 1
,

ICg,t = ACCg ·
∑

t′≤min{LTg,T remain}
DFt′ ,

where OCCg denotes the overnight capital cost, LTg denotes 674

the generator lifetime, and T remain denotes the remaining time 675

of the planning horizon. The annual increase in thermal units’ 676

fuel cost and demand still applies. 677

Table III tabulates the results of the revisited Case 1 and 678

Case 2 with considering the annuitized investment cost. In both 679

cases, there is no load shedding. Thanks to the annuitization, the 680

investment of generators can now be distributed to later planning 681

years. Compared with the previous Case 1 and Case 2, we find 682

that both total costs do not differ much, and the results in Case 1 683

remain nearly the same except for some investments distributed 684

to later years. But in Case 2, the renewable installation is more 685

prioritized, as the investment annuitization makes the renew- 686

able investment more competitive with thermal investments. 687

However, we can still draw similar conclusions that a proper 688

generation mix of conventional and renewable technologies 689

renders a more cost-effective planning portfolio if the budget 690

allows for renewable installations. As the annuitization method 691

has already taken the generators’ lifetime into account [34], we 692

do not apply the technique of considering salvage incomes [31] 693

in the revisited cases. Leveraging the annuitization method can 694

make the investment in multi-year planning more comparable, 695
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Fig. 9. Installed capacity for the WECC system.

which should be included in a more realistic G&TEP study. Also,696

it is noteworthy that the performance is highly sensitive to the697

selected WACC determined by the tax rate and expected returns698

on equity and debt.699

V. SCALABILITY TEST700

To validate the scalability of the proposed framework, we701

modify the WECC 243-bus system based on [35] for G&TEP702

studies and carry out the scalability test. Four generation tech-703

nologies are included, i.e., coal, combined-cycle, wind, and704

solar. We carry out a regionally N-1 contingency-constrained705

5-year planning problem with the hourly operation. The number706

of combinatorial scenarios, in this case, is further reduced to707

10 to reduce the computational burden. And we enable the708

phasing-out of conventional units as in Case 3.709

Fig. 9, depicts the scheduled installed capacity for each gen-710

eration technology and transmission line, where we can observe711

that the investment in solar and wind generators grows sharply712

in the first year and keeps increasing, due to the 25% annual713

phasing-out rate of the conventional generators. The compu-714

tational time of the WECC simulation is 27 hours, which is715

comparably reasonable concerning the scale of the multi-year716

stochastic and robust planning problem.717

VI. DISCUSSIONS718

To clarify the scope of our work and how it should be used as719

a reference for both academia and industry, we provide several720

discussions on this paper.721

1) Though the day-based contingencies have already been722

adopted in this paper and other works, e.g., [5], [19],723

the contingencies of power system components can be724

evaluated in a practically smaller time resolution.725

2) Using only a few representative days has been found to726

be not enough, and more representative days should be727

included in more realistic studies of power systems with728

large amounts of renewable [36].729

3) In the case studies, multiple economic factors can affect 730

the optimized planning portfolio, e.g., the increasing fuel 731

cost, decreasing renewable investment cost, annual in- 732

terest rate, and the salvage income. Different economic 733

settings may lead to a different result, but the conclusion 734

of the renewable-involved G&TEP study should hold sim- 735

ilarly as discussed in the paper. Besides, when we consider 736

a longer term of planning, renewables will begin to show 737

the potential of higher cost-effectiveness in the G&TEP. 738

4) Other practical factors should be taken into account in 739

future research to make more precise investment decisions 740

for investors, including but not limited to the employment 741

of energy storage devices, more types of renewables, 742

demand response, and ancillary services. 743

This paper aims at providing a general framework and a so- 744

lution algorithm, which can be applied to different uncertainty- 745

based G&TEP studies. The case studies in this paper are car- 746

ried out under simplified simulation settings and demonstrate 747

different renewable investment scenarios under specific param- 748

eters. The observations of a more complete and comprehensive 749

long-term G&TEP study for realistic large-scale power systems 750

may vary from this paper as the findings are dependent upon 751

many sensitive parameters including cost, discount rate and 752

other detailed operational constraints. 753

VII. CONCLUSION 754

This paper introduces a novel modeling and solution strategy 755

for the generation and transmission expansion planning under 756

ultra-high renewable penetration, which allows analyses of dis- 757

crete and continuous uncertainties. Based on the theoretical 758

derivation and numerical experiments, several remarks are in 759

order: 760
� We propose a general hybrid stochastic and robust model 761

that can accurately capture the uncertainties in the modern 762

power grid, whose discrete and continuous features are 763

taken into consideration with high flexibility. 764
� We propose a combinatorial solution strategy leveraging 765

the state-of-the-art C&CG and L-shaped algorithms that 766

can efficiently tackle intractable and multiplex uncertainty- 767

based planning problems. 768
� We investigate the long-term renewable cost-effectiveness 769

in the test results. A proper portfolio of generation mix of 770

the conventional and renewable generation is shown to be 771

beneficial under our specific problem settings, and we also 772

pave a way for future discussions on the 100% renewable 773

penetration potentials by investigating the long-term cost- 774

effectiveness of the renewable generation. 775

APPENDIX A 776

LINEAR RELAXATION TECHNIQUE 777

The product q of one binary variable z and one continuous 778

variable x can be relaxed as follows. The relaxation is tight due 779

to the convexity of the McCormick Envelope. 780

q ≤ x+M(1− z)

q ≥ x−M(1− z)
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781 q ≤ Mz

q ≥ −Mz
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