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Abstract—This paper proposes a two-stage formulation and
its solution paradigm for the coordinated economic dispatch of
transmission and distribution network. The first stage concerns
the benefits for a transmission system operator (TSO), which
transfers the optimal power injection with locational marginal
prices (LMPs) via the boundary node to the active distribution
system operators (DSOs), whereas DSOs in the second stage
return their optimal nodal power demand back to the TSO.
In the distribution network, not only conventional dispatchable
distributed generators but the uncertainties of renewable energy
and volatile demands are considered, which are tackled via
stochastic programming approach in the second stage. Two
convexified DistFlow formulations for the branch flow in a DSO
are tested and compared in this work. The proposed framework
can be effectively solved by a generalized multi-cut L-shaped
method. Numerical experiments on test systems support the
efficacy of this paradigm.

I. NOMENCLATURE

1) Sets:
T /D Transmission/distribution system.
GT /GD Conventional thermal generator of transmis-

sion/distribution system.
R/ I Renewable generator/connected bus.
LT /LD Load of transmission/distribution system.
FT /FD Line of transmission/distribution system.
S /M Sending/receiving bus of line.
C Generator or injection mapping with bus.
H Time horizon.
K Piecewise linear segment.

2) Indices:
g / r / ` Conventional generator / renewable generator /

load.
f Line.
n Bus.
i boundary bus/power injection.
ω Uncertainty scenario.
k Piecewise linear segment.
o Iteration counter.
d Index for multiple distribution systems.
h Time index.

3) Parameters:
PC Penalty cost.
r / x / b Resistance/reactance/susceptance.
RD/RU Ramp-down/up limits.

4) Uncertain Parameters:
Pr /P`D Renewable generation/distribution load.

5) Variables:
Pg /Pi Active generation output/power injection.
Qg /Qi Reactive generation output/power injection.
Pf /Qf Active/reactive line flow.
P loss
f /Qloss

f Active/reactive line loss.
V / δ Bus voltage magnitude/angle.
s` load shedding.

II. INTRODUCTION

The coordination between transmission and distribution
networks (T-D coordination) has raised great attention these
days along with the wild growth of smart grids. Some recent
scholars [1] suggested to adopt decentralized transactive op-
timization method to deal with the coordination between the
TSO and DSOs, for the convenience it provides to let each
operator focus only on its own management and the interfaces,
which befriends the nature of hierarchical market structure.

Economic dispatch (ED) problem is thus expanded from
transmission perspective to T-D coordination in a decentralized
manner. Z. Li et al. developed a distributed algorithm to deal
with this kind of problem in [2] and [3], with computational
analysis on the AC optimal power flow in T-D coordination
[4]. However, upon using their strategy, it is inconvenient to
integrate uncertainties such as renewable energy and demand
response in the distribution level, which becomes a more and
more practical issue in today’s power system.

To cope with the uncertainty, currently, there are two main-
stream and mature techniques, namely stochastic programming
(SP) and robust optimization (RO). SP uses scenario set
generated from a priori probability distribution to represent the
uncertainty, whereas RO defines conservative bounds for un-
certainties to find the worst-case scenario and make decisions
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accordingly. For the uncertainty of the renewable generation
and loads, extracting SP method can yield better benefit
compared with using RO. Another method, distributionally
robust optimization (DRO), can combine both advantages for
SP and RO, which, however, asks for much more difficult im-
plementation for decomposition framework to the coordination
between TSO and DSOs e.g. cutting plane formulation. The
exploration of using DRO technique in the coordinated ED
can be one of the future works.

Apropos of the formulation of AC active/reactive power
flow in the distribution system, the coordination between
transmission system and secondary distribution system, which
can be fairly regarded as a single-phase balanced system, is
considered. The interconnection between transmission system
and distribution system is via boundary nodes. An approxi-
mately linearized DistFlow model is adopted from [5] in the
second-stage distribution system problem. Another alternative
model convexified the AC power flow in [6], which used
second-order cone to relax the quadratic constraints. Devel-
oping a convex approximation or relaxation serves for the
convenience of computing subgradients when generating affine
cutting planes later. Both of the models have been tested in the
numerical experiment to compare the accuracy. A generalized
multi-cut L-shaped method is also devised in this literature to
decentralize the overall solution of the two-stage uncertainty-
based problem. More details about the decentralization can be
found in Section IV.

The rest of the paper is fourfold. Section III provides the
mathematical formulation including the linearized DistFlow
and decomposition structure of the T-D coordinated ED;
Section IV illustrates the solution paradigm of the generalized
multi-cut L-shaped method. Results of numerical experiments
on a Tran6Dist7+9 system are discussed in Section V; Section
VI summarizes the paper and presents some future potentials
on this topic.

III. MATHEMATICAL FORMULATION

A. Stochastic Expected Formulation

The overall formulation of the stochastic multi-period T-
D coordinated ED is shown in (1). TC and DC represent
costs for the transmission part and distribution part, which are
detailed in (1a) and (1b) respectively. In each cost formulation,
the piecewise linear thermal generation curve is utilized and
load shedding is permitted. Note that in the distribution-side
cost, the optimization variables are associated with scenario
index ωd. All of the uncertainties in the model are restricted to
the distribution part, which is reasonable when the fluctuation
of load profiles always happens in distribution systems. For
the distribution part, vd stands for the weight of different
distribution systems which pertains to the importance of
that distribution system. For instance, hospitals and military
regions require higher priority in terms of electricity serving,
which results in higher weight vd in this model.

min
PgT ,h,s`T ,h

TC +
D∑

d

vd min
Pω

gD,h
,sω

`D,h

Eω

{
DC

}

subject to

TC =
H∑

h

{ GT∑

gT

K∑

k

(akgTPgT ,h + bkgT ) +
LT∑

`T

PC`T s`T ,h

}
,

(1a)

DC =
H∑

h

{ GD∑

gD

K∑

k

(akgDP
ω
gD,h + bkgD ) +

LD∑

`D

PC`Ds
ω
`D,h

}
,

(1b)
GT∑

gT |C(gT )=nT

PgT ,h −
I∑

i|C(i)=nT

Pi,h −
FT∑

fT |S(fT )=nT

PfT ,h+

FT∑

fT |M(fT )=nT

PfT ,h =
L∑

`T |C(`T )=nT

{ P`T ,h − s`T ,h }, ∀nT ,∀h,

(T-1c)

PfT ,h = x−1
fT [δnT |S(nT )=fT ,h − δnT |M(nT )=fT ,h], ∀fT ,∀h,

(T-1d)

Pmin
gT ,h ≤ PgT ,h ≤ Pmax

gT ,h, ∀gT ,∀h (T-1e)

−RDgT ∆h ≤ PgT ,h+∆h − PgT ,h ≤ RUgT ∆h, ∀gT ,∀h,
(T-1f)

GD∑

gD|C(gD)=nD

PgD,h +
R∑

r|C(r)=nD

Pr,h(ω) +
I∑

i|C(i)=nT

ξi,hPi,h

−
FD∑

fD|S(fD)=nD

PfD,h +
FD∑

fD|M(fD)=nD

PfD,h

=
L∑

`D|C(`D)=nD

{ P`D,h(ω)− s`D,h }, ∀nD,∀h, (D-1g)

Distribution Line F low Constraints, (D-1h)

Pmin
gD,h ≤ PgD,h ≤ Pmax

gD,h, ∀gD,∀h, (D-1i)

−RDgD∆h ≤ PgD,h+∆h − PgD,h ≤ RUgD∆h, ∀gD,∀h,
(D-1j)

The constraints are divided into two groups, i.e. trans-
mission part and distribution part, which are labeled with
T and D in the equation tag. Specifically, constraints (T-
1c) and (D-1g) are the active power balance constraints,
wherein ξi,h in (D-1g) is the dual variable of (T-1c) ∀nT ∈ I
and indicates the locational marginal price (LMP) offered by
the transmission side to the distribution system; the positive
direction of power injection is assumed from transmission
to distribution; constraints (T-1d) and (D-1h) define the line
flows, wherein (T-1d) imposes DC power flow approximation
in transmission network flow and (D-1h) will be explicitly
explained in later sections; constraints (T-1e) and (D-1i)
formulate the generation limits for thermal units, whereas
constraints (T-1f) and (D-1j) introduce their ramp-up/ramp-
down limits. Note that conventional thermal units still play a
important role in transmission/distribution system even when
the renewable penetration grows wildly nowadays. This model
is also scalable to distribution-microgrid co-optimization when
the weights vd for microgrids are more practically used.
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B. Convexified Distribution AC Power Flow

For constraints (D-1h), the original AC power flow in dis-
tribution lines, which is highly nonlinear and thus nonconvex,
cannot be simply approximated via DC approach like in the
transmission level, due to more concerns on high R/X ratio and
over-voltage issue in distribution systems. Currently, there are
two mainstream strategies towards tackling the nonconvexity
in the AC power flow, i.e., linear approximation (LA) and
second-order cone programming (SOCP) relaxation. In this
study, both of them are discussed in terms of algorithmic
incorporation and solution quality. The detailed formulation
of these two strategies are discussed below.

In the case of LA on DistFlow introduced by [7], equations
(2) below can replace (D-1h), which regulate the voltage. Load
shedding is allowed here to ensure feasibility of all scenarios,
which simplifies the algorithm. The distribution system here is
limited to radial. V min

nD and V max
nD are assumed to be in Range

A regulation, i.e., 0.95 and 1.05 p.u.
V[nD|S(fD)=nD,h] − V[nD|M(fD)=nD,h] =

rfDPfD,h + xfDQfD,h

V0
, ∀fD,∀h, (2a)

V min
nD,h ≤ VnD,h ≤ V max

nD,h, ∀nD,∀h. (2b)
On the other hand, in the case of SOCP relaxation, active/re-

active power losses are considered [6], which are omitted in
the previous LA. In this formulation, SOCP constraints (3)
provide another alternative to replace constraints (D-1g)-(D-
1h) and ensure higher accuracy than the previous method.
Note that V 2

nD = WnD , and this formulation is constructed
based on numerical approximations, i.e., sin δnD ≈ δnD ,
VS(nD)VM(nD) ≈ 1, which are famous and widely applied
in both industry and academia.

GD∑

gD|C(gD)=nD

PgD,h +

R∑

r|C(r)=nD

Pr,h(ω) +

I∑

i|C(i)=nT

Pi,h

−
FD∑

fD|S(fD)=nD

PfD,h +

FD∑

fD|M(fD)=nD

PfD,h−

FD∑

fD|S(fD)=nD

P loss
fD,h =

L∑

`D|C(`D)=nD

{P`D,h(ω)− s`D,h},

∀nD,∀h, (3a)
GD∑

gD|C(gD)=nD

QgD,h +
R∑

r|C(r)=nD

Qr,h(ω) +
I∑

i|C(i)=nT

Qi,h

−
FD∑

fD|S(fD)=nD

QfD,h +
FD∑

fD|M(fD)=nD

QfD,h−

FD∑

fD|S(fD)=nD

Qloss
fD,h =

L∑

`D|C(`D)=nD

Q`D,h(ω) + bnDWnD ,

∀nD,∀h, (3b)
W[nD|S(fD)=nD,h] −W[nD|M(fD)=nD,h] =

2(rfDPfD,h + xfDQfD,h) + rfDP loss
fD,h + xfDQloss

fD,h,

∀fD,∀h, (3c)

xfDP loss
fD,h = rfDQloss

fD,h, ∀fD,∀h, (3d)

P loss
fD,hW[nD|M(fD)=nD,h]

rfD

≥ P 2
fD,h +Q2

fD,h, ∀fD,∀h,
(3e)

Wmin
nD ≤WnD,h ≤Wmax

nD , ∀nD,∀h. (3f)

IV. DECOMPOSITION STRUCTURE AND
SOLUTION PARADIGM

This section discusses the decomposition of the original
problem (1) and the corresponding solution strategy, i.e. gen-
eralized multi-cut L-shaped method.

The problem can be naturally divided into two groups, i.e.
transmission problem and distribution problem(s), which are
put into each stage respectively. Some previous works like [8]
used similar structures, but they did not consider stochasticity,
multiple subsystems and their corresponding weights, which
are important in the real world for many bilevel applications.

Since the overall system is decentralized, two individual
series of problems can be set up for transmission system and
distribution systems respectively, which can be solved locally
and without interference.

A. Master Problem
This first-stage problem, i.e., the master problem (M ),

contains the transmission part of the coordinated ED. Note that
the complicating variable in the original model is the active
injection Pi,h in the boundary node, which forms the basis of
the decentralized structure.

M = min
PgT ,h,s`T ,h

TC + η, (4)

subject to
Constraints (1a), (T-1c)-(T-1h). (4a)

A compact form for (4) is represented in (5).
M = min

x,y
c>1 x + η, (5)

subject to
H>1 x + K>1 y = r1, (5a)

A>1 x ≤ b1, (5b)
where η is the dummy variable for lower bounding cuts,
and y is the complicating variable. With master problem
solved, transmission operator determines the optimal power
injection, as well as the nodal marginal price, which is just
the dual solution of the operating constraint, and transfers to
the distribution systems.

B. Subproblem
the second-stage problem, i.e., the subproblem (Sd), con-

tains problem concerning each distribution system.
Sd = min

Pω
gD,h

,sω
`D,h

Eω

{
DC

}
, (6)

subject to
Constraints (1b), (D-1i)-(D-1l). (6a)

A compact form for (6) is represented in (7).
Sd = min

z
c>2 z, (7)
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Algorithm 1 Generalized Multi-cut L-shaped Method
Initialization: Set o← 0, LBo ← −∞, UBo ←∞, Oo = ∅. Solve problem M
without η to obtain initial yo∗.
Step 1. o← o+ 1.
for d ∈ D do:

Step 2. Setup and solve the subproblem (Sd) with y∗ and known ωd as
inputs. Obtain the optimal dual vector γo

d(ωd) for each realization.
Step 3. Compute the coefficient vectors of the affine cut as (Prωd

is the
probability of scenario ωd)

αo
d =

∑

ωd

Prωd
γo
d(ωd)

>r2; βo
d = −

∑

ωd

Prωd
H>2 γ

o
d(ωd).

Thus the affine cut can be defined as αo
d + (βo

d)
>y ≤ η. Add the affine

coefficient pair to the collection Oo = Oo−1 ∪ (αo
d,β

o
d).

end for
Step 4. Update UBo = min{UBo−1, c>1 x + [αo

d + (βo
d)
>y]} and LBo = ηo.

If
∣∣∣UBo−LBo

UBo

∣∣∣ ≤ ε, then terminate, declare optimality and report (xo,yo).
Step 5. Setup and solve the master problem M with all cuts computed in
the previous for loop with their weights vd.

M = min
x,y

c>1 x+ η,

subject to H>1 x+K>1 y = r1,

A>1 x ≤ b1,

αj
d + (βj

d)
>y ≤ η/vd, ∀j ∈ Oo, ∀d ∈ D.

Let (xo+1,yo+1, ηo+1) denote the optimal primal solution.
goto Step 1.

1

subject to
H>2 y

∗ + K>2 z = r2 : γ, (7a)

A>2 z ≤ b2, (7b)
where y∗ is a parameter inherited from the optimal complicat-
ing variable in the master problem. With subproblems solved,
distribution operators obtain their optimal dispatches based
on their own uncertainty sets, and give back their optimal
boundary power injections via generating an affine cut by
subgradients γ to the transmission operator. Ultimately, upon
convergence, the optimality for all systems is guaranteed as
no infeasibility is raised and global convexity remains strict.

C. Generalized Multi-cut L-shaped Algorithm

To cope with this master-sub structure, a generalized multi-
cut L-shaped algorithm is devised. The general procedure is
demonstrated in Algorithm 1. Basically, with an initial point of
the complicating variables, subproblem can deliver the optimal
complicating variables back to the master problem via creating
lower bounding affine cuts by subgradients. Each subsystem
can have its own scenario set and thus return its own single-
cut, which results in a multi-cut per iteration in the master
system. Along with the iteration, due to convexity, those cuts
form tight lower bounds to the master problem and obtain
the optimality upon convergence with polynomial time if the
scenario sets for all subsystems are finite.

One important issue is the cut generation under the SOCP
formulation of AC power flow in the distribution systems.
Upon observation on constraint (3e), however, it is clear that
no complicating variable, i.e., Pi,h is encompassed, which
means the SOCP constraints merely influence the second-stage
distribution system. Specifically, all elements of the technology
matrix H2 and vector r2 for the SOCP part are zero.

Fig. 1. Tran6Dist7+9 System Topology [9]
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The convergence proof of this algorithm is omitted due to
the space limitation. The computational efficiency is based on
the choice of ε and quality of scenario set.

V. NUMERICAL EXPERIMENTS

To test this strategy, case studies on a modified
Tran6Dist7+9 test system from [9] are carried out for day-
ahead 24h ED problem. The system topology is depicted
in Fig. 1, which is consisted of one transmission system
(TS) and two radial active distribution grids (ADGs). The
resistance and reactive demand/generation are not considered
in [9], but they can be obtained via line R/X ratio (assume
all distribution lines are with the same configuration and R/X
ratio is 1:2.1) and power factor (assume to be V-I 0.95 lagging)
using existed data. Ramp-up and ramp-down limits are all
40MW, and the total number of intervals K for piecewise
linearization on thermal generation is 5. All of the experiments
were implemented in GAMS [10] and solved by CPLEX 12.8
on a workstation of Windows PC with 8-core Intel i7-6700
CPU and 8GB of RAM.

For uncertainty, two renewable generators RG1 in ADG1

and RG2 in ADG2 are incorporated, whose active power
outputs are uncertain and sampled from two different historical
datasets obtained in NREL [11]. The hourly load profile is also
assumed to be volatile which respects the demand behavior in
NREL. In order to greatly reduce the load shed, the penalty
cost for shedding is set $1600/MW.

Firstly, 240 and 160 samples for the renewable generators
RG1 and RG2 and 180 sample sets for all loads are gener-
ated based on the historical data. the Fast Forward/Backward
approach incorporated in GAMS SCENRED toolbox is used
to reduce the overall renewable generator scenarios into 10
for RG1 and 12 for RG2, and overall load scenarios into 10,
which results in 100 hour-dependent scenarios for distribution
system ADG1 and 120 hour-dependent scenarios for distri-
bution system ADG2 in total. Note that the demand L in
the TS is deterministic, and uncertainties only appear in the
distribution parts. vd for both distribution systems are set 1 in
this study. Since it is a relatively small test system, the criterion
ε is set 0, which means convergence holds when UBo = LBo.

Two comparative experiments on isolated ED and coordi-
nated ED are carried out and reported in Table I. IED1 mode
means that TS forecasts the boundary power demand as all
demands in the ADG, while IED2 mode forecasts it as the
maximum forecast demand minus the maximum generation
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TABLE I
COMPARATIVE ANALYSIS ON ISOLATION AND COORDINATION

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

 Fig. 2.   Results for Linear Approximation Case

Fig. 3.   Results for SOCP Case

outputs in the ADGs, and TDCED stands for the coordinated
ED setting, then TS performs a transmission ED [2]. The tests
are based on SOCP formulation. It can be observed from the
table that in both isolated modes there exists notable power
mismatch, even if IED2 mode, which is widely used in the
industry, can fairly approximate the coordination as in the
TDCED mode. A small power mismatch, however, can still
raise severe predicament for system operators. This defends
the necessity of considering T-D coordination.

Fig. 2 and 3 show the results of optimal objective values
in the case of using LA and SOCP for the AC power flow,

respectively. Total load sheds in both cases upon convergence
are within 2.7%. The costs of two ADGs start at extremely
high position in that TS would like to draw huge amount of
energy from the distribution sides to reduce its own power
outputs in the first iteration, when ADGs have to feed TS
even with high load sheds. But finally the injection becomes
positive and high.

As described in section III, SOCP provides more accurate
approximation on the distribution line flow, which also compli-
cates the system. Thus, the costs in the SOCP case are higher
as well as the iteration number, compared with the LA case.
The average Pi and Qi from transmission to distribution upon
convergence are 74.33MW and 44.89MVar. Ploss and Qloss in
all lines are within 5%, except for some scenarios when they
reach 15%, which might results from extreme cases.

Additionally, the numbers of the total constraints and vari-
ables are 166,542 and 94,420, respectively, in the LA case,
while the numbers increase to 335,213 and 123,349 in the
SOCP case. The average CPU time was 3.424 seconds. A
centralized deterministic equivalent stochastic programming
problem was also set up and solved for 5.493 seconds.
Note that these numbers steam from a relatively small case,
whose gap would rise dramatically in larger cases and larger
scenario set. This behavior emphasizes the necessity to harness
decomposition technique for computational enhancement.

VI. CONCLUSION AND FUTURE WORKS

A decentralized paradigm for coordinated economic dis-
patch between transmission and distribution networks is pro-
posed in this paper. Numerical experiments show that the
proposed strategy is potent and effective for this problem.
Larger cases should be tested in future works, where the
feasibility cut of the L-shaped method should be incorporated
for seeking more efficient performance.
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